Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
Structural Monitoring and Maintenance
/
v.10
no.3
/
pp.207-220
/
2023
The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.
Journal of the Korean Society for Nondestructive Testing
/
v.32
no.6
/
pp.637-647
/
2012
Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis.
Steel truss bridge is one of the most widely used bridge types in Indonesia. Out of all Indonesia's national roads, the number of steel truss bridges reaches 12% of the total 17,160 bridges. The application of steel truss bridges is relatively high considering this type of bridge provides advantages in the standardization of design and fabrication of structural elements for typical bridge spans, as well as ease of mobilization. Directorate of Road and Bridge Engineering, Ministry of Works and Housing, has issued a standard design for steel truss bridges commonly used in Indonesia, which is designed against the design load in SNI 1725-2016 Bridge Loading Standards. Along with the development of actual traffic load measurement technology using Bridge Weigh-in-Motion (B-WIM), traffic loading data can be utilized to evaluate the reliability of standard bridges, such as standard steel truss bridges which are commonly used in Indonesia. The result of the B-WIM measurement on the Central Java Pantura National Road, Batang - Kendal undertaken in 2018, which supports the heaviest load and traffic conditions on the national road, is used in this study. In this study, simulation of a sequences of traffic was carried out based on B-WIM data as a moving load on the Australian type Steel Truss Bridge (i.e., Rangka Baja Australia -RBA) structure model with 60 m class A span. The reliability evaluation was then carried out by calculating the reliability index or the probability of structural failure. Based on the analysis conducted in this study, it was found that the reliability index of the 60 m class Aspan for RBA bridge is 3.04 or the probability of structural failure is 1.18 × 10-3, which describes the level of reliability of the RBA bridge structure due to the loads from B-WIM measurement in Indonesia. For this RBA Bridge 60 m span class A, it was found that the calibrated nominal live load that met the target reliability is increased by 13% than stated in the code, so the uniform distributed load will be 7.60 kN/m2 and the axle line equivalent load will be 55.15 kN/m.
Traffic load and volume is one of the most important physical quantities for bridge safety evaluation and maintenance strategies formulation. This paper aims to conduct the statistical analysis of traffic volume information and the multimodal modeling of gross vehicle weight (GVW) based on the monitoring data obtained from the weigh-in-motion (WIM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. A genetic algorithm (GA)-based mixture parameter estimation approach is developed for derivation of the unknown mixture parameters in mixed distribution models. The statistical analysis of one-year WIM data is firstly performed according to the vehicle type, single axle weight, and GVW. The probability density function (PDF) and cumulative distribution function (CDF) of the GVW data of selected vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, lognormal and Weibull). The mixture parameters are determined by use of the proposed GA-based method. The results indicate that the stochastic properties of the GVW data acquired from the field-instrumented WIM sensors are effectively characterized by the method of finite mixture distributions in conjunction with the proposed GA-based mixture parameter identification algorithm. Moreover, it is revealed that the Weibull mixture distribution is relatively superior in modeling of the WIM data on the basis of the calculated Akaike's information criterion (AIC) values.
Korea has achieved significant economic growth with building the Gyeongbu Expressway. As the number of new road construction projects has decreased, it becomes more important to maintain optimal status of the current road networks. One of the best ways to accomplish it is weight enforcement as active control measure of traffic load. This study is to develop High-speed Weigh-in-motion System in order to enhance efficiency of weight enforcement, and to analyze patterns of overloaded trucks on highways through the system. Furthermore, it is to review possibilities of developing overweight control system with application of the HS-WIM system. The HS-WIM system developed by this study consists of two sets of an axle load sensor, a loop sensor and a wandering sensor on each lane. A wandering sensor detects whether a travelling vehicle is off the lane or not with the function of checking the location of tire imprint. The sensor of the WIM system has better function of classifying types of vehicles than other existing systems by detecting wheel distance and tire type such as single or dual tire. As a result, its measurement errors regarding 12 types of vehicle classification are very low, which is an advantage of the sensor. The verification tests of the system under all conditions showed that the mean measurement errors of axle weight and gross axle weight were within 15 percent and 7 percent respectively. According to the WIM rate standard of the COST-323, the WIM system of this study is ranked at B(10). It means the system is appropriate for the purpose of design, maintenance and valuation of road infrastructure. The WIM system in testing a 5-axle cargo truck, the most frequently overloaded vehicle among 12 types of vehicles, is ranked at A(5) which means the system is available to control overloaded vehicles. In this case, the measurement errors of axle load and gross axle load were within 8 percent and 5 percent respectively. Weight analysis of all types of vehicles on highways showed that the most frequently overloaded vehicles were type 5, 6, 7 and 12 among 12 vehicle types. As a result, it is necessary to use more effective overweight enforcement system for vehicles which are seriously overloaded due to their lift axles. Traffic volume data depending upon vehicle types is basic information for road design and construction, maintenance, analysis of traffic flow, road policies as well as research.
This paper aims at formulating various statistical models for the study of a ten year Weigh-in-Motion (WIM) data collected from various WIM stations in Hong Kong. In order to study the bridge live load model it is important to determine the mathematical distributions of different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc. Each of the above parameters is analyzed by various stochastic processes in order to obtain the mathematical distributions and the Maximum Likelihood Estimation (MLE) method is adopted to calculate the statistical parameters, expected values and standard deviations from the given samples of data. The Kolmogorov-Smirnov (K-S) method of approach is used to check the suitability of the statistical model selected for the particular parameter and the Monte Carlo method is used to simulate the distributions of maximum value stochastic processes of a series of given stochastic processes. Using the statistical analysis approach the maximum value of gross vehicle weight and axle weight in bridge design life has been determined and the distribution functions of these parameters are obtained under both free-flowing traffic and dense traffic status. The maximum value of bending moments and shears for wide range of simple spans are obtained by extrapolation. It has been observed that the obtained maximum values of the gross vehicle weight and axle weight from this study are very close to their legal limitations of Hong Kong which are 42 tonnes for gross weight and 10 tonnes for axle weight.
We are often faced with the task of having to estimate the hydrogen and helium ionizing luminosities of massive stars in the study of H II regions and the warm ionized medium (WIM). Using the results of the most complete compilation of stellar parameters (the effective temperature, stellar radius and surface gravity) and the latest Kurucz stellar atmosphere models, we calculate the ionizing photon luminosities in the $H^0\;and\;He^0$ continua from O3 to B5 stars. We compared the theoretical Lyman-continuum luminosity with the observationally inferred luminosity of the H II region around ${\alpha}$ Vir, and found that the theoretical value is higher than the observed value in contrast to the eariler result.
The importance of process for repair and reinforcement of the bridge is increasing because of the lack of the fatigue load and stress, a lowering of the bridge load carrying capacity owing to impact and oscillation, deterioration on cultivation periods of the bridge, etc. Typically the experimenter values the bridge load carrying capacity by the real rating factor and response modification factor in bridge load rating through static load test and dynamic load test. But the error occurred in reliability of response modification factor in bridge load rating according to experience of experimenter. so tests of connecting probability theory and valuation of the bridge recently. The study is to compute the real load carrying capacity of the bridge and the rating factor and response modification factor on grade of the bridge, and calculate the probability of over-loaded truck load from Weigh In Motion(WIM) Data in FORTRAN programming applying to Monte-Carlo Simulation. At the result of this study, it is acquired that the new grade is computed for the probability of over-loaded truck load and surface inspection. The A grade is over 1.95, B grade is $1.55{\sim}1.94$, C grade is $1.26{\sim}1.54$, D grade is $1.14{\sim}1.25$, E grade is under 1.13 of rating factor, respectively.
Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
Smart Structures and Systems
/
v.24
no.6
/
pp.723-732
/
2019
Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.