• 제목/요약/키워드: B-$TiO_2$

검색결과 744건 처리시간 0.028초

연소합성 TiO2 나노입자의 고온 상변환 특성에 관한 연구 (Phase Transformation Characteristics of Combustion-Synthesized TiO2 Nanoparticles)

  • 최상민;이교우
    • 대한기계학회논문집B
    • /
    • 제32권3호
    • /
    • pp.224-230
    • /
    • 2008
  • In this article, $TiO_2$ nanoparticles were synthesized by using $O_2$-enriched coflow, hydrogen, diffusion flames. We investigated the thermal stability of the flame-synthesized $TiO_2$ nanoparticles by examining the crystalline structures of the nanoparticles. Also, the results were compared with those of commercial P-25 nanoparticles. $TiO_2$ nanoparticles, which were spherical with diameters approximately ranging from 30 to 60nm, were synthesized. From the XRD analyses, about 96wt% of the synthesized nanoparticles were anatase-phase. After the heat-treatment at $800^{\circ}C$ for 30 minutes, the synthesized $TiO_2$ nanoparticles showed no significant changes of their shapes and crystalline phases. On the other hand, most of the commercial particles sintered with each other and changed to the rutile-phase. Based on the result of XRD analysis it is believed that the flame-synthesized $TiO_2$ nanoparticles have higher thermal stability at $800^{\circ}C$ than the commercial particles.

SiC-$TiB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 가압(加壓)의 영향(影響) (Effect of Pressure on Properties of the SiC-$TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;서재호;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1228-1229
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressure or pressureless annealing at 1,650[$^{\circ}C$] for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ $YAG(Al_5Y_3O_{12})$. The relative density, the flexural strength and the Young's modulus showed the highest value of 88.32[%], 136.43[MPa] and 52.82[GPa] for pressure annealed SiC-$TiB_2$ composites at room temperature. The electrical resistivity showed the lowest value of 0.0162[${\Omega}{\cdot}cm$] for pressure annealed SiC-$TiB_2$ composite at 25[$^{\circ}C$]. The electrical resistivity of the pressure annealed SiC-$TiB_2$ composite was positive temperature coefficient resistance (PTCR) but the electrical resistivity of the pressureless annealed SiC-$TiB_2$ composites was negative temperature coefficient resistance(NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

투과전자현미경에 의한 $LaTi_{0.8}V_{0.2}O_3$ 화합물의 결정구조 분석 (Structural characterization of $LaTi_{0.8}V_{0.2}O_3$ compounds by transmission electron microscoy)

  • 김좌연;윤의중;박경순;심규환;류선윤;김유혁
    • 한국결정성장학회지
    • /
    • 제8권4호
    • /
    • pp.567-572
    • /
    • 1998
  • 아크 용융을 사용하여 예비 건조된$La_2O_3,\;V_2O_3,\;TiO_2$,Ti의 혼합물로부터 제조된$LaTi_{0.8}V_{0.2}O_3$ 고용체의 결정구조를 투과전자현미경과 컴퓨터 이미지 시뮬레이션을 이용하여 연구하였다. 컴퓨터 이미지 시뮬레이션은 multislice 방법으로 여러 시편 두께와 초점 거리에서 실시하였다. $LaTi_{0.8}V_{0.2}O_3$ 의 결정구조는 Pnma 공간군을 가진 GdFeO3 형태의 사방정계$(a\approx5.58{\AA},\;b\approx7.89{\AA},\;and\;c\approx5.58{\AA})$로 결정되었다. $LaTi_{0.8}V_{0.2}O_3$에서 Ti와 V 원자의 규칙화에 대한 증거를 찾아 볼 수 없었다.

  • PDF

SnO2-TiO2-V2O5계의 노랑안료 합성 (Synthesis of SnO2-TiO2-V2O5 System Yellow Pigment)

  • 주인돈;황동하;이현수;박주석;이병하
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.639-642
    • /
    • 2009
  • The research was performed to find out the optimum firing condition for the $SnO_2-TiO_2-V_2O_5$ system yellow pigment. The pigment based on $SnO_2-V_2O_5$ system showed very intense yellow color and it was used widely in ceramics industry. Synthesized pigment, with partial substitutions of $SnO_2\;by\;TiO_2$, was fired at $1300{^{\circ}C}$ soaking 1h and it showed bright yellow color. $SnO_2-TiO_2-V_2O_5$ system was very more intensive changes in yellow color by colorimetric value $b^*$ than $SnO_2-V_2O_5$ system. Synthesized yellow pigments were characterized by X-ray diffraction (XRD), FT-IR, and UV-vis spectroscopy. The best composition for yellow pigment was 93:7:0.5(mole%) for $SnO_2-V_2O_5-TiO_2$. The measurement of CIE $L^*a^*b^*$ of pigment was $L^*(78.82),\;a^*(-4.88)\;and\;b^*$(59.25).

Easy and Fast Synthesis of Pd-MWCNT/TiO2 by the Sol-Gel Method and its Recyclic Photodegradation of Rhodamine B

  • Ye, Shu;Ullah, Kefayat;Zhu, Lei;Meng, Ze-Da;Sun, Qian;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제50권4호
    • /
    • pp.251-256
    • /
    • 2013
  • Multiwalled carbon nanotubes (MWCNTs) modified with Pd and $TiO_2$ composite catalysts were synthesized by the sol-gel method followed by solvothermal treatment at low temperature. The chemical composition and surface structure were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Photocatalytic recycle degradation experiments were carried out under both UV and visible light irradiation in the presence of MWCNT/$TiO_2$ and Pd-MWCNT/$TiO_2$ composites. As expected, the nanosized Pd-MWCNT/$TiO_2$ photocatalysts had enhanced activity over the non Pd treated MWCNT/$TiO_2$ material in the degradation of a rhodamine B (Rh.B) solution. An increase in photocatalytic activity was observed and attributed to an increase in the photo-absorption effect by MWCNTs and the cooperative effect of Pd and $TiO_2$ nanoparticles. According to the recycled results, the as-prepared Pd-MWCNT/$TiO_2$ sample had a good effect on it.

TiO2 Nano-doping Effect on Flux Pinning and Critical Current Density in an MgB2 Superconductor

  • Kang, J.H.;Park, J.S.;Lee, Y.P.;Prokhorov, V.G.
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.15-18
    • /
    • 2011
  • We have studied the $TiO_2$ doping effects on the flux pinning behavior of an $MgB_2$ superconductor synthesized by the in-situ solid-state reaction. From the field-cooled and zero-field-cooled temperature dependences of magnetization, the reversible-irreversible transition of $TiO_2$-doped $MgB_2$ was determined in the H-T diagram (the temperature dependence of upper critical magnetic field and irreversibility line). For comparison, the similar measurements are also obtained from SiC-doped $MgB_2$. The critical current density was estimated from the width of hysteresis loops in the framework of Bean's model at different temperatures. The obtained results manifest that nano-scale $TiO_2$ inclusions served as effective pinning centers and lead to the enhanced upper critical field and critical current density. It was concluded that the grain boundary pinning mechanism was realized in a $TiO_2$-doped $MgB_2$ superconductor.

無加壓 열처리에 의한 ${\beta}$-SIC-TiB$_2$ 複合體의 製造와 特性 (Manufacture and Properties of ${\beta}$-SIC-TiB$_2$ Composites Densified by Pressureless Annealing)

  • 신용덕;주진영;박미림
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권5호
    • /
    • pp.221-225
    • /
    • 2001
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering was investigated. The ${\beta}-SiC-TiB_2$ ceramic composites were hot-press sintered and pressureless-annealed by adding 16, 20, 24 wt% ${\beta}-SiC-TiB_2$(6:4 wt%) powder as a liquid forming additives at low temperature(1800 $^{\circ}C$) for 4 h. Phase analysis of composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$). The relative density was over 95-88 % of the theoretical density, and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest value of 5.88 MPa${\cdot}m^{1/2}$ for composites added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest value of $5.22{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm$ for composite added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature, and was all positive temperature coefficeint resistance(PTCR) against temperature up to 900 $^{\circ}C$.

  • PDF

$Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성 (Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives)

  • 임승혁;신용덕;주진영;윤세원;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권7호
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF

BST 세라믹 저온소결에 $Li_2CO_3$와 ZnBO가 미치는 영향 (Effective of $Li_2CO_3$ and ZnBO for low temperature sintered $(Ba_{0.5},Sr_{0.5})TiO_3$ ceramics)

  • 김세호;유희욱;구상모;하재근;이영희;고중혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.297-297
    • /
    • 2007
  • The $(B_{0.5},Sr_{0.5})TiO_3$ ceramics, which added with low sintering materials $Li_2CO_3$ and ZnBO, was investigated for LTCC(low temperature co-fired ceramic) applications. To compare sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ respectively, we added 1, 2, 3, 4, and 5wt% of $Li_2CO_3$ and ZnBO to $(B_{0.5},Sr_{0.5})TiO_3$. For confirming the sintering temperature, the respective specimens were sintered from $750^{\circ}C$ to $1200^{\circ}C$ by $50^{\circ}C$. The case of $Li_2CO_3$ greatly lowered the sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ ($1350^{\circ}C$) below $900^{\circ}C$. The addition of ZnBO improved the loss tangent of $(B_{0.5},Sr_{0.5})TiO_3$. The crystalline structure of $LiCO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ and ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$ was analyzed with the X-ray diffraction (XRD) analysis. The dielectric permittivity and loss tangent of $Li_2CO_3$ doped BST and ZnBO doped BST were measured with the HP 4284A precision. From the electrical characterization, we respectively obtained the dielectric permittivity 1361, loss tangent $6.94{\times}10^{-3}$ at $Li_2CO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ (3wt%) and the dielectric constant 1180, loss tangent $3.70{\times}10^{-3}$ at ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$(5wt%).

  • PDF

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation

  • Meng, Ze-Da;Cho, Sun-Bok;Ghosh, Trisha;Zhu, Lei;Choi, Jong-Geun;Park, Chong-Yeon;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.91-96
    • /
    • 2012
  • AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.