• Title/Summary/Keyword: B tree

Search Result 1,007, Processing Time 0.026 seconds

Development of Species-Specific PCR to Determine the Animal Raw Material (종 특이 프라이머를 이용한 동물성 식품원료의 진위 판별법 개발)

  • Kim, Kyu-Heon;Lee, Ho-Yeon;Kim, Yong-Sang;Kim, Mi-Ra;Jung, Yoo Kyung;Lee, Jae-Hwang;Chang, Hye-Sook;Park, Yong-Chjun;Kim, Sang Yub;Choi, Jang Duck;Jang, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • In this study, the detection method was developed using molecular biological technique to distinguish authenticity of animal raw materials. The genes for distinction of species about animals targeted at Cytochrome c oxidase subunit I (COI), Cytochrome b (Cytb), and 16S ribosomal RNA (16S rRNA) genes in mitochondrial DNA. The species-specific primers were designed by that Polymerase Chain Reaction (PCR) product size was around 200 bp for applying to processed products. The target 24 raw materials were 2 species of domestic animals, 6 species of poultry, 2 species of freshwater fishes, 13 species of marine fishes and 1 species of crustaceans. The results of PCR for Rabbit, Fox, Pheasant, Domestic Pigeon, Rufous Turtle Dove, Quail, Tree Sparrow, Barn Swallow, Catfish, Mandarin Fish, Flying Fish, Mallotus villosus, Pacific Herring, Sand Lance, Japanese Anchovy, Small Yellow Croaker, Halibut, Jacopever, Skate Ray, Ray, File Fish, Sea Bass, Sea Urchin, and Lobster raw materials were confirmed 113 bp ~ 218 bp, respectively. Also, non-specific PCR products were not detected in compare species by species-specific primers. The method using primers developed in this study may be applied to distinguish an authenticity of food materials included animal raw materials for various processed products.

Studies on the Desertification Combating and Sand Industry Development(III) - Revegetation and Soil Conservation Technology in Desertification-affected Sandy Land - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(III) - 중국(中國)의 황막사지(荒漠沙地) 녹화기술분석(綠化技術分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Choi, Hyung-Tae;Lee, Sang-Ho;Park, Joo-Won;Wang, Lixian;Zhang, Kebin;Sun, Baoping
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.90-104
    • /
    • 2001
  • This study is aimed to analyze and to evaluate the revegetation and soil conservation technology in desertification-affected sandy land, resulting from the project of "Studies on the desertification combating and sand industry development". Main native plants for combating desertification : The general characteristics of vegetation distribution in desertified regions are partially concentrated vegetation distribution types including the a) desert plants in low zone of desert or sanddune of depressed basin, b) salt-resistant plants around saline lakes, c) grouped vegetation with Poplar and Chinese Tamarix of freshwater-lakes, saline-lakes and river-banks, d) gobi vegetation of gravel desert and e) grassland and oasis-woods around the alluvial fan of rivers, etc. Generally, Tamarix ehinensis Lour., Haloxylon ammodendron Bunge., Calligonum spp., Populus euphratica Oliver., Elaeagnus angustifolia L., Ulmus pumila L., Salix spp., Hedysarum spp., Caragana spp., Xanthoceras sorbifolia Bunge., Nitraria tangutorum Bobr., Lespedeza bicolor, Alhagi sparsifolia Shap., Capparis spinosa L., Artemisia arenaria DC., etc. are widely distributed in desertified regions. It is necessary for conducting research in the native plants in desertified regions. Analysis of intensive revegetation technology system for combating desertification : In the wind erosion region, the experimental research projects of rational farming systems (regional planning, shelterbelts system, protection system of oasis, establishment of irrigation-channel networks and management technology of enormous farmlands, etc.), rational utilization technology of plant resources (fuelwood, medicinal plants, grazing and grassland management, etc.), utilization technology of water resources (management and planning of watershed, construction of channel and technology of water saving and irrigation, etc.), establishment of sheltetbelts, control of population increase and increased production technology of agricultural forest, fuelwood and feed, etc. are preponderantly being promoted. And in water erosion region, the experimental research projects of development of rational utilization technology of land and vegetation, engineering technology and protection technology of crops, etc. are being promoted in priority. And also, the experimental researches on the methods of utilization of water (irrigation, drainage, washing and rice cultivation, etc.), agricultural methods (reclamation of land, agronomy, fertilization, seeding, crop rotation, mixed-cultivation and soil dressing works, etc.) and biological methods (cultivation of salt-resistant crops and green manure and tree plantation, etc.) for improvement of saline soil and alkaline soil in desertified-lands are actively being promoted. And the international cooperations on the revegetation technology development projects of desertified-lands are sincerely being required.

  • PDF

Evaluation of Function of Upland Farming for Preventing Flood and Fostering Water Resources (밭농사의 수자원 함양과 홍수조절 기능에 대한 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.163-179
    • /
    • 2003
  • Multifunctionality of agriculture which is not traded on the market now has been an important international issue in that it environmental and public benefits. We carried out to modify and to update the function of upland farming on flood prevention and fostering water resources. Economic values of environmental benefits were evaluated by replacement cost methods. Models to evaluate the function of preventing flood were selected as: (1)precipitation(flood-inducing) - runoff(A), (2) soil depth ${\times}$ soil air phase, (3) precipitation (flood-inducing) - runoff(B), (4) soil depth ${\times}$ effective porosity of soil. Models to estimate the function of fostering water resources were (1) saturated hydraulic conductivity (Ks) ${\times}$ duration of saturation(days) ${\times}$ (1-ratio of water flow directly into river), (2) precipitation ${\times}$ ratio of water fostered by rain resources ${\times}$ (area of upland/total land area), and (3) soil water retention quantity(under standing crop or tree) - SWRQ(in bare soil). Function of preventing flood was $883Mg\;ha^{-1}$ of water per year and 645 million Mg for the whole upland area. Function of fostering water resources was $94.1Mg\;ha^{-1}$ of water per year and 69 million Mg for the whole upland area. The value of flood-preventing function evaluated by replacement cost methods was estimated 1,428 billion won per year as compared to the cost for dam construction. The value of water resource fostering were estimated 8.6 billion won in the price of living water.

Early Effect of Environment-friendly Harvesting on the Dynamics of Organic Matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea (중부지역 일본잎갈나무림의 친환경벌채가 산림 내 유기물 변화에 미치는 초기 영향)

  • Wang, Rui Jia;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.473-481
    • /
    • 2022
  • Environment-friendly harvesting is practiced to maintain ecosystem, landscape, and forest protection functions. The present study was conducted at Simgok-ri, Sinbuk-myeon, Pocheon, Gyeonngi-do, where a 41-50-year-old Japanese larch forest was harvested in an environment-friendly manner from 2017 to 2019. The dynamics of organic matter in this forest were investigated at three years after the harvest. Specifically, organic matter content was measured on the forest floor and in overstory biomass, litterfall, and soil up to 30 cm in depth from June 2020 to January 2021. Owing to the harvest, the amount of overstory biomass of the Japanese larch stands decreased from 142.22 to 44.20 t ha-1. On the forest floor, the amount of organic matter was 32.87 t ha-1 in the control plots and 23.34 t ha-1 in the harvest plots. Annual litterfall was 4.43 t ha-1 yr-1 in the control plots and 1.16 t ha-1 yr-1 in the harvest plots. Soil bulk density in the B horizon was 0.97 g cm-3 in the control plots and 1.06 g cm-3 i n the harvest plots. Soil organic matter content was 11.5% in the control plots and 12.8% in the harvest plots. The total amount of soil organic matter did not differ significantly between the control plots (245.21 t ha-1) and harvest plots (263.92 t ha-1), although the amount of soil organic matter tended to be higher in the harvest plots. The total amount of organic matter in the forest was estimated to be 406.48 t ha-1 in the control plots and 338.21 t ha-1 in the harvest plots. In the harvest plots, the ratio of aboveground organic matter decreased to 13.1% and soil organic matter increased to 78.0%, indicating that the distribution of organic matter changed significantly in these plots. Overall, the carbon accumulated in aboveground biomass was substantially reduced by environment-friendly harvesting, whereas the soil carbon level increased, which played a role in mitigating the reduction of system carbon in the forest. These results highlight one possible resolution for forest management in terms of coping with climate change. However, given that only three years of environment-friendly harvesting data were analyzed, further research on the dynamics of organic matter and tree growth is needed.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives (첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Kie-Pyo;Shin, Dong-Sho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.3-30
    • /
    • 1979
  • Larch ($\underline{Larix}$ $\underline{leptolepis}$ GORDON), one of the major afforestation species in Korea in view of its growing stock and rate of growth, is not favored as a raw material for pulp due to its low yield of pulp and difficulties with bleaching arising from the high content of extractives in wood, and the high heartwood ratio and the active phenolics, respectively. The purpose of this study is to investigate the characteristics of firstly pulping with various additives of cellulose protector for the yield of pulp, and secondly bleaching with oxygen for chlotination-alkali extraction of five stage-sequence to reduce chlorine compounds in bleaching effluents. The kraft cooking liquor for five age groups of larchwood was 18 percent active alkali with 25 percent sulfidity and 5 : 1 liquor-to-wood ratio, and each soda liquor for sap-and heart-wood of the 15-year-old larchwood was 18 percent alkali having one of the following cellulose protectors as the additive; magnesium sulfate ($MgSO_4$, 2.5%), zinc sulfate ($ZnSO_4$, 2.5%), aluminium sulfate ($Al_2(SO_4)_3$, 2.5%), potasium iodide (KI, 2.5%), hydroquinone (HQ, 2.5%), anthraquinone (AQ, 0.1%) and ethylene diamine (EDA, 2.5%). Then each anthraquinone-soda liquor for the determination of suitable cooking condition was the active alkali level of 15, 17 and 19 percent with 1.0, 0.5 and 0.1 percent anthraquinone, respectively. The cooking procedure for the pulps was scheduled to heat to 170$^{\circ}C$ in 90 minutes and to cook 90 minutes at the maximum temperature. The anthraquinone-soda pulps from both heartwood and sapwood of 15-year-old larchwood prepared with 0.5 percent anthraquinone and 18 percent active alkali were bleached in a four-stage sequency of OCED. (O: oxygen bleaching, D: chlorine dioxide bleaching and E: alkali extraction). In the first stage oxygen in atmospheric pressure was applied to a 30 percent consistency of pulp with 0.1 percent magnesium oxide (MgO) and 3, 6, and 9 percent sodium hydroxide on oven dry base, and the bleached results were compared pulps bleached under the conventional CEDED (C: chlorination). The results in the study were summarized as follows: 1. The screened yield of larch kraft pulp did not differ from particular ages to age group, but heartwood ratio, basic density, fiber length and water-extractives contents of wood and the tear factor of the pulp increased with increasing the tree age. The total yield of the pulp decreased. 2. The yield of soda pulp with various chemicals for cellulose protection of the 15-year-old larchwood increased slightly more than that of pure soda pulp and was slightly lower than that of kraft pulp. The influence of cellulose protectors was similar to the yield of pulps from both sapwood and heartwood. The effective protectors among seven additives were KI, $MgSO_4$ and AQ, for which the yields of screened pulp was as high as that of kraft pulp. Considering the additive level of protector, the AQ was the most effective in improving the yield and the quality of pulp. 3. When the amount of AQ increased in soda cooking, the yield and the quality of the pulp increased but rejects in total yield increased with decreasing the amount of active alkali from 19 to 15 percent. The best proportion of the AQ seemed to be 0.5 percent at 17 percent active alkali in anthraquinone-soda pulping. 4. On the bleaching of the AQ-soda pulp at 30 percent consistency with oxygen of atomospheric pressure in the first stage of the ODED sequence, the more caustic soda added, the brighter bleached pulp was obtained, but more lignin-selective bleaching reagent in proportion to the oxygen was necessary to maintain the increased yield with the addition of anthraquinone. 5. In conclusion, the suitable pulping condition for larchwood to improve the yield and quality of the chemical pulp to the level for kraft pulp from conventional process seemed to be. A) the selection of young larchwood to prevent decreasing in yield and quality due to the accumulation extractives in old wood, B) the application of 0.5 percent anthraquinone to the conventional soda cooking of 18 percent active alkali, and followed, C) the bleaching of oxygen in atmospheric pressure on high consistency (30%) with 0.1 percent magnesium oxide in the first stage of the ODED sequence to reduce the content of chlorine compounds in effluent.

  • PDF