• Title/Summary/Keyword: B cell-activating factor

Search Result 64, Processing Time 0.026 seconds

Study on the Action by PAF on IL-1 Modulation in Alveolar Macrophages: Involvement of Endogenous Arachidonate Metabolites and Intracellular $Ca^{++}$ Mobilization

  • Lee, Ji-Hee;Kim, Won-Ki;Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.241-249
    • /
    • 1998
  • Platelet-activating factor(PAF) enhanced interleukin-1(IL-1) activity by the interaction with a specific receptor in rat alveolar macrophages. In this study, we investigated the role of endogenous arachidonate metabolites and intracellular calcium mobilization in the PAF-induced IL-1 activity. Alveolar macrophages were preincubated with 5-lipoxygenase and cyclooxygenase inhibitors 30 min before the addition of PAF and lipopolysaccharide(LPS). After 24h culture, IL-1 activity was measured in the supernate of sample using the thymocyte proliferation assay. Inhibition of 5-lipoxygenase by nordihydroguaiaretic acid and AA-861 completely blocked the PAF-induced enhancement of IL-1 activity with $IC_{50}\;of\;2\;{\mu}M\;and\;5\;{\mu}M$, respectively. In contrast, the inhibition of cyclooxygenase pathway by indomethacin and ibuprofen resulted in the potentiation in PAF-induced IL-1 activity with maximal effect at $1\;{\mu}M\;and\;5\;{\mu}M$, respectively. In addition, leukotriene $B_4$ and prostaglandin $E_2$ production were observed in PAF-stimulated alveolar macrophage culture. As could be expected, 5-lipoxygenase and cyclooxygenase inhibitors abolished PAF- stimulated leukotriene $B_4$ and prostaglandin $E_2$ production, respectively. The effects of PAF on intracellular calcium mobilization in alveolar macrophages were evaluated using the calcium-sensitive dye fura-2 at the single cell level. PAF at any dose between $10^{-16}\;and\;10^{-8}$ M did not increase intracellular calcium. Furthermore, there was no effective change of intracellular calcium level when PAF was added to alveolar macrophages in the presence of LPS or LPS+LTB4, and 4, 24 and 48h after treatment of these stimulants. Together, the results indicate that IL-1 activity induced by PAF is differently regulated through subsequent induction of endogenous 5-lipoxygenase and cyclooxygenase pathways, but not dependent on calcium signalling pathway.

  • PDF

Expression of Various Pattern Recognition Receptors in Gingival Epithelial Cells

  • Shin, Ji-Eun;Ji, Suk;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.77-82
    • /
    • 2008
  • Innate immune response is initiated by the recognition of unique microbial molecular patterns through pattern recognition receptors (PRRs). The purpose of this study is to dissect the expression of various PRRs in gingival epithelial cells of differentiated versus undifferentiated states. Differentiation of immortalized human gingival epithelial HOK-16B cells was induced by culture in the presence of high $Ca^{2+}$ at increased cell density. The expression levels of various PRRs in HOK-16B cells were examined by realtime reverse transcription polymerase chain reaction (RTPCR) and flow cytometry. In addition, the expression of human beta defensins (HBDs) was examined by real time RT-PCR and the amounts of secreted cytokines were measured by enzyme linked immunosorbent assay. In undifferentiated HOK-16B cells, NACHT-LRR-PYDcontaining protein (NALP) 2 was expressed most abundantly, and toll like receptor (TLR) 2, TLR4, nucleotide-binding oligomerization domain (NOD) 1, and NOD2 were expressed in substantial levels. However, TLR3, TLR7, TLR8, TLR9, ICE protease-activating factor (IPAF), and NALP6 were hardly expressed. In differentiated cells, the levels of NOD2, NALP2, and TLR4 were different from those in undifferentiated cells at RNA but not at protein levels. Interestingly, differentiated cells expressed the increased levels of HBD-1 and -3 but secreted reduced amount of IL-8. In conclusion, the repertoire of PRRs expressed by gingival epithelial cells is limited, and undifferentiated and differentiated cells express similar levels of PRRs.

Expression and Localization of ATF4 Gene on Oxidative Stress in Preimplantation Mouse Embryo (생쥐 착상전 배아에서 산화적 스트레스에 의한 ATF4 유전자의 발현과 존재 부위)

  • Na, Won-Heum;Kang, Han-Seung;Eo, Jin-Won;Gye, Myung-Chan;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Reactive oxygen species(ROS) generated in cellular metabolism have an effect on cell maturation and development. In human reproductive tract, oxidative injury by ROS may induce female infertility. Also, oxidative injury may be responsible for developmental retardation and arrest of mammalian preimplantation embryos. Activating transcription factor 4(ATF4) is a member of the cyclic-AMP response element-binding(CREB) familiy of basic region- leucine zipper(bZip). ATF4 is known to regulate stress response to protect cell from various stress factors and inducer of apoptisis. The purpose of this study was to investigate whether ATF4 is involved in the defensive mechanism in oxidative stress condition during the development of mouse preimplantation embryos. To verify the expression of ATF4 in oxidative stress condition, 2-cell stage embryos were cultured in HTF media containing 0.1mM, 0.5mM or 1mM hydrogen peroxide($H_2O_2$) for 1hr(2-cell), 8hr(4-cell), 17hr(8-cell), 24hr(morula), 48hr(early blastocyst) or 64hr(late blastocyst). The developmental rate decreased in the 0.1mM $H_2O_2$ treated group compared with control group. In embryos treated with 0.5mM and 1mM $H_2O_2$ showed 2-cell block. As a results of the semi-quantitative RT-PCR analysis of SOD1, ATF4 and Bax gene expression, SOD1, ATF4 and Bax genes were increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. In 2-cell embryos, expression of SOD1, ATF4 and Bax genes were notably increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. Immunofluorescence analysis showed that ATF4 protein was localized at the cytoplasm of preimplantation embryos. The increase in ATF4 immunoreactivety was observed in the 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. It suggests that oxidative stress by $H_2O_2$ induces expression of ATF4 and may be involved in protection mechanism in preimplantation embryos from oxidative injury.

  • PDF

Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor

  • Sung, Wai-Nam;Kwok, Hoi-Hin;Rhee, Man-Hee;Yue, Patrick Ying-Kit;Wong, Ricky Ngok-Shun
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.477-486
    • /
    • 2017
  • Background: Our previous studies have demonstrated that ginsenoside-Rg1 can promote angiogenesis in vitro and in vivo through activation of the glucocorticoid receptor (GR). Furthermore, microRNA (miRNA) expression profiling has shown that Rg1 can modulate the expression of a subset of miRNAs to induce angiogenesis. Moreover, Rb1 was shown to be antiangiogenic through activation of a different pathway. These studies highlight the important functions of miRNAs on ginseng-regulated physiological processes. The aim of this study was to determine the angiogenic properties of Korean Red Ginseng extract (KGE). Methods and Results: Combining in vitro and in vivo data, KGE at $500{\mu}g/mL$ was found to induce angiogenesis. According to the miRNA sequencing, 484 differentially expressed miRNAs were found to be affected by KGE. Among them, angiogenic-related miRNAs; miR-15b, -23a, -214, and -377 were suppressed by KGE. Meanwhile, their corresponding angiogenic proteins were stimulated, including vascular endothelial growth factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and MET transmembrane tyrosine kinase. The miRNAs-regulated signaling pathways of KGE were then found by Cignal 45-Pathway Reporter Array, proving that KGE could activate GR. Conclusion: KGE was found capable of inducing angiogenesis both in vivo and in vitro models through activating GR. This study provides a valuable insight into the angiogenic mechanisms depicted by KGE in relation to specific miRNAs.

Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS: The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS: The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of $50-250{\mu}g/mL$. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to $250{\mu}g/mL$ and were 149% and 129% at $250{\mu}g/mL$ concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of $500{\mu}g/mL$. CONCLUSIONS: This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I collagen, and osteocalcin. These results suggest that the effective osteoblastic differentiation induced by melanin extract from GD makes it potentially useful in maintaining bone health.

Cheogjogupye-Tang has Anti-oxidant Potential through the Activation of Nrf2 (청조구폐탕(淸燥救肺湯)의 Nrf2 매개 항산화 효능)

  • Lee, Kwang Gyu;Lee, Hak In;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.174-179
    • /
    • 2015
  • Transcription factor, Nrf2 was well known to protect cell from oxidative stress by up-regulating it's dependent anti-oxidative genes such as HO-1 and NQO1. Cheongjogupye-tang (CJGPT), a traditional herbal formula was originally recorded in 『EuiMunBeopRyul』, still having been used to treat pulmonary disease such as asthma and pulmonary inflammation, in Eastern Asian countries. However, the underlying therapeutic mechanisms remain elusive. The purpose of this study is to investigate the anti-inflammatory or anti-oxidative effects of CJGPT on the RAW 264.7 cells. To examine the anti-inflammatory or anti-oxidative effects of CJGPT, MTT assay, immunoblotting, RT-PCR and reporter gene assays were performed. Although CJGPT slightly suppressed the nuclear NF-κB expression, it did not decreased the expression of pro-inflammatory genes in LPS-stimulated RAW 264.7 cells. Moreover, it did not increased the transcriptional activity of NF-κB in reporter gene assay. However, CJGPT upregulated the nuclear expression of Nrf2, as well as increased the expression of Nrf2-dependent genes such as HO-1 and NQO1. In addition, CJGPT incresed the transcriptional activity of Nrf2. Taken together, our results showed that CJGPT exerts functions as an anti-oxidant mainly by activating Nrf2.

Microarray Study of Genes Differentially Modulated in Response to Nitric Oxide in Macrophages

  • Nan, Xuehua;Maeng, Oky;Shin, Hyo-Jung;An, Hyun-Jung;Yeom, Young-Il;Lee, Hay-Young;Paik, Sang-Gi
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Nitric oxide(NO) has been known to play important roles in numerous physiologic processes including neurotransmission, vasorelaxation, and cellular apoptosis. Using a mouse cDNA gene chip, we examined expression patterns and time course of NO-dependent genes in mouse macrophage RAW264.7 cells. Genes shown to be upregulated more than two fold or at least at two serial time points were further selected and validated by RT-PCR. Finally, 81 selected genes were classified by function as signaling, apoptosis, inflammation, transcription, translation, ionic homeostasis and metabolism. Among those, genes related with signaling, apoptosis and inflammation, such as guanylate cyclase 1, soluble, alpha3(Gucy1a3); protein kinase C, alpha($Pkc{\alpha}$); lymphocyte protein tyrosine kinase(Lck); BCL2/adenovirus E1B 19 kDa-interacting protein(Bnip3); apoptotic protease activating factor 1(Apaf1); X-linked inhibitor of apoptosis(Xiap); cyclin G1(Ccng1); chemokine(C-C motif) ligand 4(Ccl4); B cell translocation gene 2, anti-proliferative(Btg2); lysozyme 2(Lyz2); secreted phosphoprotein 1(Spp1); heme oxygenase(decycling) 1(Hmox1); CD14 antigen(Cd14); and granulin(Grn) may play important roles in NO-dependent responses in murine macrophages.

Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells (핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진)

  • Choe, Won Kyung;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1268-1276
    • /
    • 2018
  • The cytidine analog decitabine (DEC) acts as a nucleic acid synthesis inhibitor, whereas ammonium pyrrolidine dithiocarbamate (PDTC) is an inhibitor of nuclear factor-${\kappa}B$. The aim of this study was to investigate the possible synergistic inhibitory effect of these two inhibitors on proliferation of human gastric cancer AGS cells. The inhibitory effect of PDTC on AGS cell proliferation was significantly increased by DEC in a concentration-dependent manner, and this inhibition was associated with cell cycle arrest at the G2/M phase and the induction of apoptosis. This induction of apoptosis by the co-treatment with PDTC and DEC was related to the induction of DNA damage, as assessed by H2AX phosphorylation. Further studies demonstrated that co-treatment with PDTC and DEC induced the disruption of mitochondrial membrane potential, increased the generation of intracellular reactive oxygen species (ROS) and the expression of pro-apoptotic Bax, and down-regulated the expression of anti-apoptotic Bcl-2, ultimately resulting in the release of cytochrome c from the mitochondria into the cytoplasm. Co-treatment with PDTC and DEC also activated caspase-8 and caspase-9, which are representative caspases of the extrinsic and intrinsic apoptosis pathways. Co-treatment also activated caspase-3, which was accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Taken together, these data clearly indicated that co-treatment with PDTC and DEC suppressed the proliferation of AGS cells by increasing DNA damage and activating the ROS-mediated extrinsic and intrinsic apoptosis pathways.

PD-1 Expression in LPS-Induced Raw264.7 Cells Is Regulated via Co-activation of Transcription Factor NF-κB and IRF-1 (Lipopolysaccharide 유도된 Raw264.7 세포주에서 전사조절인자 NF-κB와 IRF-1의 공동작용에 의해 조절되는 PD-1 발현연구)

  • Choi, Eun-Kyoung;Lee, Soo-Woon;Lee, Soo-Woong
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • Programmed Death-1 (PD-1) is one of the important immune-inhibitory molecules which was expressed in T cells, B cells, NKT cells, and macrophages activated by various immune activating factors. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is one of the crucial immunogens for PD-1 expression. However, there are only a few reports on the expression mechanisms of PD-1 in innate immune cells. In this study, we investigate the expression mechanisms of PD-1 in LPS-stimulated Raw264.7 cell lines by RT-PCR, Western Blot, flow cytometry as well as ChIP assay and co-immunoprecipitation. When Raw264.7 cells were stimulated with LPS, PD-1 expression was greatly up-regulated via PI3K and p38 signaling. Primary macrophages isolated from LPS-injected mice were also shown the increased expression of PD-1. In promoter assay, NF-${\kappa}B$ and IRF-1 binding regions in mouse PD-1 promoter are important for PD-1 expression. We also found that the co-activation of NF-${\kappa}B$ and IRF-1 is indispensable for the maximum PD-1 expression. These results indicate that the modulation of PD-1 expressed in innate immune cells could be a crucial for the disease therapy such as LPS-induced mouse sepsis model.

Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40hiCD5+ regulatory B cells in vitro and in vivo

  • Kim, Hyuk Soon;Lee, Jun Ho;Han, Hee Dong;Kim, A-Ram;Nam, Seung Taek;Kim, Hyun Woo;Park, Young Hwan;Lee, Dajeong;Lee, Min Bum;Park, Yeong Min;Kim, Hyung Sik;Kim, Young Mi;You, Ji Chang;Choi, Wahn Soo
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in $CD40^{hi}CD5^+$ B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B cell-activating factor, suggesting that $CD40^{hi}$ is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-$10^{-/-}CD5^+CD19^+$ B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of $CD40^{hi}CD5^+$ Breg cells in mice. However, the population of $CD40^{hi}CD5^+$ B cells was minimal in IL-$10^{-/-}$ mice by LPS. Altogether, our findings show that Breg cells are largely enriched in $CD40^{hi}CD5^+$ B cells and the autocrine effect of IL-10 is critical to the formation of $CD40^{hi}CD5^+$ Breg cells.