• Title/Summary/Keyword: B급 이음

Search Result 3, Processing Time 0.02 seconds

Applicability of Current Design Code to Class B Splice of SD600 Re-Bars (SD600 철근의 B급 겹침 이음에 대한 현행설계기준의 적용성)

  • Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.449-459
    • /
    • 2011
  • An experimental study was performed to evaluate the applicability of current design code to the class B splice of SD600 reinforcing bars. Twelve simply supported beam and slab specimens with re-bar splices were tested under monotonic loading. Parameters for this test were re-bar diameter, concrete cover thickness, concrete strength, and stirrup spacing. Concrete strengths ranged 24.7~55.3 MPa. Most of the specimens were designed to satisfy the class B splice length specified by current design code. Average bar stresses resulting from this test were compared with the predictions by the KCI code provisions. Based on the result, the applicability of the current design code to SD600 re-bars were evaluated. The re-bar splices gave satisfactory performance for all D13 re-bar splices and for D22 and D32 splices with transverse reinforcement. On the basis of the test result, for D22 and the greater diameter bars, the use of either transverse reinforcement of the thicker concrete cover was recommended.

Experimental Study on Lap Splice of Headed Deformed Reinforcing Bars in Tension (인장력을 받는 확대머리 이형철근의 겹침이음에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.59-67
    • /
    • 2014
  • In tension lap splices of straight deformed bars, KCI Code (KCI2012) and ACI Code (ACI318-11) requires that the lap lengths for class B splice are 1.3 times as development length. KCI2012 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. The purpose of this experimental study is to evaluate that KCI2012 equation for the development length, $l_{dt}$, of headed bars can be used to calculate the lap length, $l_s$, of headed deformed bars in grade SD400 and SD500, having specified yield strength of 400 and 500 MPa. Test results showed that specimens with $l_s$ equal to $1.3l_{dt}$ had maximum flexural strengths as 1.16~1.31 times as the nominal flexural strengths, flexural failure mode, and ductility. These observations indicate that $1.3l_{dt}$ is suitable to the tensile lap length of headed deformed bars in grade SD400 and SD500.

Lap Details Using Headed Bars and Hooked Bars for Flexural Members with Different Depths (확대머리 철근과 갈고리 철근을 이용한 단차가 있는 휨부재의 겹침이음상세)

  • Lee, Kyu-Seon;Jin, Se-Hoon;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.144-152
    • /
    • 2016
  • This paper focuses on the experimental study for investigating the performance for lap splice of hooked or headed reinforcement in beam with different depths. In the experiment, seven specimens, with its variables as the lap length of headed or hooked bar, the existence of stirrups, etc., was manufactured. Bending test was conducted. Lap strengths by test were compared with the theoretical model based on KCI2012. The result showed that the cracks at failure mode occurred along the axial direction to a headed bar. The initial stiffness and the stiffness after initial crack were similar for all specimens. For HS series specimens without stirrups, a 25% increase in lap length was increased 11.8~18.1% maximum strengths. For HH series specimens without stirrups, a increase in lap length did not affect the maximum strengths because of the pryout failure of headed bar. For HS series specimens, the theoretical lap strengths based on KCI2012 considering the B grade lap and the reduction factor for stirrup were evaluated. They are smaller than the test strengths and can ensure the safety in terms of strength capacity. For HH series specimens, the stirrups in the lap zone are needed to prevent the pryout behaviour of headed bar.