• 제목/요약/키워드: B$_2$O$_3$ flux

검색결과 105건 처리시간 0.022초

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

정수장 침전지 유출수의 규조토 여과에 관한 연구 (A Study on the Diatomaceous Earth Filtration of Settling Basin Effluent)

  • 신대윤;지성남;문옥란;김지영;서동우;조영관
    • 한국환경보건학회지
    • /
    • 제30권5호
    • /
    • pp.410-416
    • /
    • 2004
  • The objective of this investigation was to evaluate applicability of precoat filtration that can be substituted for rapid sand filter of conventional water treatment system(CWTS). Precoat filter used in this experiment are candle filter. Element disk of candle are pore size $10{\mu}m(R),\;20{\mu}m(B)$ And diatomaceous earth are cake pore size $3.5{\mu}m$(Standard Super- Cel; A), $7{\mu}m$(Hyflo Super-Cel; B) and $17{\mu}m$(Celite 545RV; C). $2kg/m^2$ diatomaceous earth is used for precoating, it coated candle in $5{\sim}6mm$ thickness. 1. Al adsorption dosages by diatomaceous earth used in experimental we Hyflo Super-Cel 0.843mg/g, Standard Super-Cel 0.782 mg/g and Celite 545RV 0.766 mg/g. 2. Filtrate of precoat filter during 60min are R-C combination 20.7($m^3/m^2$)>B-C 18.3($m^3/m^2$)>B-B 15.0($m^3/m^2$)> R-B 12.9($m^3/m^2$)> R-A 11,093($l/m^2$). 3. Water quality of precoat filter effluent are thus. $KMnO_4$ consumption are $1.10{\sim}2.20mg/l$, removal rate are $30.9{\sim}65.6\%$. They are R-A 1.10(mg/l)(removal rate $65.6\%$). R-C(2.20 mg/l)(removal rate $30.9\%$). 4. $Al^{3+}$ are not detected with all combination, removal rate $100\%$. 5. Considering water quality and flux, continued running time of R-A combination is 7 hr. Accumulated filtrate are $74.4 m^3/m^2$, average flux is $177.2 l/m^2{\cdot}min$. And filtrate per diatomaceous earth 1g are 37.2 l. 6. R-A effluent's water quality are $KMnO_4$ Consumption 1.10(mg/l), DOC 1.161 mg/1, Al 0.0 mg/1, $UV_{254}$ 0.016/cm, Turbidity 0.1(NTU). R-A combination is suitable to precoat filtration for the settling basin effluent treatment.

HPCVD 방법으로 성장된 $MgB_2$ 박막의 수송 특성 (Transport Properties of $MgB_2$ Films Grown by Hybrid Physical Chemical Vapor Deposition Method)

  • 김혜영;황태종;김동호;성원경;강원남
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.5-10
    • /
    • 2007
  • We prepared four different $MgB_2$ films on $Al_2O_3$ by hybrid physical chemical vapor deposition method with thicknesses ranging from $0.65\;{\mu}m$ to $1.2\;{\mu}m$. X-ray diffraction patterns confirm that all the $MgB_2$ films are c-axis oriented perpendicular to $Al_2O_3$ substrates. The superconducting onset temperature of $MgB_2$ films were between 39.39K and 40.72K. The residual resistivity ratio of the $MgB_2$ films was in the range between 3.13 and 37.3. We measured the angle dependence of critical current density ($J_c$) and resistivity, and determined the upper critical field ($H_{c2}$) from the temperature dependence of the resistivity curves. The anisotropy ratios defined as the ratio of the $H_{c2}$ parallel to the ab-plane to that perpendicular to the ab-plane were in the range of 2.13 to 4.5 and were increased as the temperature was decreased. Some samples showed increase of $J_c$ and decrease of resistivity when a magnetic field in applied parallel to the c-axis. We interpret this angle dependence in terms of enhanced flux pinning due to columnar growth of $MgB_2$ along the c-axis.

  • PDF

편광 현미경을 이용한 Sodium Niobate 단결정의 분역 구조 관찰 (In Situ Observation of Domain Structure of $NaNbO_3$ Using Polarizing Microscope)

  • 정선태
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1235-1239
    • /
    • 1997
  • Sodium niobate single crystals were grown by high temperature solution growth with Na2O/B2O3 flux. The phase transitions and domain structures of sodium niobate were observed using transmission polarizing microscope from room temperature to $650^{\circ}C$. There was imperfect extinction region within as-grown crystals and this area could be removed by heat treatment. The area existed within crystal till 3$65^{\circ}C$, in which temperature the space group of sodium niobate is changed from Pbma to Pmnm. The phase transition from Pbma to Pmnm happened abruptly with changing domain structure. At 48$0^{\circ}C$, 52$0^{\circ}C$ and 572$^{\circ}C$, the colors and walls of domains were changed. All domains disappeared and the space group of sodium niobate was changed from P4/mbm to Pm3m at 64$0^{\circ}C$. When sodium niobate changed from high temperature phase to low temperature phase, the memory effect of domain structure was not observed.

  • PDF

The superconductivity and pinning properties of Y2O3-doped GdBa2Cu3O7-δ films prepared by pulsed laser deposition

  • Oh, Won-Jae;Park, Insung;Yoo, Sang-Im
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.41-45
    • /
    • 2018
  • We have investigated the effect of $Y_2O_3$ nanoparticles on the pinning properties of $Y_2O_3$-doped $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) films. Both undoped and $Y_2O_3$-doped GdBCO films were grown on $CeO_2$-buffered MgO (100) single crystal substrates by pulsed laser deposition (PLD) using KrF (${\lambda}=248nm$) laser. The $Y_2O_3$ doping contents were controlled up to ~ 2.5 area% by varying the internal angles of $Y_2O_3$ sectors put on the top surface of GdBCO target. Compared with the $Gd_2O_3$-doped GdBCO films previously reported by our group [1], the $Y_2O_3$-doped GdBCO films exhibited less severe critical temperature ($T_c$) drop and thus slightly enhanced critical current densities ($J_c$) and pinning force densities ($F_p$) at 65 K for the applied field parallel to the c-axis of the GdBCO matrix (B//c) with increasing the doping content. Below 40 K, the in-field $J_c$ and $F_p$ values of all $Y_2O_3$-doped GdBCO films exhibited higher than those of undoped GdBCO film, suggesting that $Y_2O_3$ inclusions might act as effective pinning centers.

위상차를 갖고 변화하는 자기장과 전류가 동시에 가해진 $Sm_1Ba_2Cu_3O_{7-\delta}$ Coated Conductor의 자기이력 손실 (Hysteresis Loss in a $Sm_1Ba_2Cu_3O_{7-\delta}$ Coated Conductor under Simultaneously Applied Field and Current with Phase Differences)

  • 이상무;정예현;곽기성;이준규;유재은;염도준;김호섭;하홍수;오상수
    • Progress in Superconductivity
    • /
    • 제10권2호
    • /
    • pp.92-98
    • /
    • 2009
  • The magnetic field profiles near the surface of a $Sm_1Ba_2Cu_3O_{7-\delta}$ coated conductor(CC-tape) under magnetic field and current that were applied simultaneously with phase differences ${\phi}s$ were measured using scanning Hall probe method. Measurements were carried out along the elliptic load lines with $\phi=90^{\circ}\;and\;45^{\circ}$ for some $B_{peak},\;I_{peak}$ values. From the measured field profiles, sheet current density J(x, $B_a,\;I_a$) and magnetic flux density $B_0(x,\;B_a,\;I_a)$ profiles in the CC-tape were calculated. Using these J(x, $B_a,\;I_a$) and $B_0(x,\;B_a,\;I_a)$ profiles, we estimated the hysteresis energy loss Q in the CC-tape. The estimated Qs, together with our previous results for $\phi=0^{\circ}$ from [9], were compared with theoretical values based on Brandt's calculation.

  • PDF

SrAl2O4계 축광재료의 습식공정에 의한 나노분말 합성 및 발광특성 (Synthesis of the Nano-sized SrAl2O4 Phosphors by Wet Processing and its Photoluminescence Properties)

  • 김정식
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.477-481
    • /
    • 2008
  • $Eu^{2+}$ and $Dy^{3+}$ co-doped strontium aluminate, $SrAl_2O_4$ long phosphorescent phoshor was fabricated and its photoluminescence was characterized. The phosphor, $SrAl_2O_4:Eu^{2+},Dy^{3+}$ was synthesized by a coprecipitation in which metal salts of $Sr(NO_3)_2$, $Al(NO_3)_3{\cdot}9H_2O$, were dissolved in $(NH_4)_2CO_3$ solution with adding $Eu(NO_3)_3{\cdot}5H_2O$ and $Dy(NO_3)_3{\cdot}5H_2O$ as a activator and co-activator, respectively. The coprecipitated products were separated from solution, washed, and dried in a vacuum dry oven. The dried powders were then mixed with 3 wt% $B_2O_3$ as a flux and heated at $800{\sim}1400^{\circ}C$ for 3 h under the reducing ambient atmosphere of 95%Ar+$5%H_2$ gases. For the synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$, properties of photoluminescence such as emission, excitation and decay time were examined. The emission intensity increased as the annealing temperature increased and showed a maximum peak intensity at 510 nm with a broad band from $400{\sim}650\;nm$. Monitored at 520 nm, the excitation spectrum showed a maximum peak intensity at $315{\sim}320\;nm$ wavelength with a broad band from $200{\sim}500\;nm$ wavelength. The decay time of $SrAl_2O_4:Eu^{2+},Dy^{3+}$ increased as the annealing temperature increased.

$Y_2O_3$ 나노입자가 $YBa_2Cu_3O_{7-x}$ 박막의 임계전류밀도에 미치는 영향 (Effect of $Y_2O_3$ Nanoparticles on Critical Current Density of $YBa_2Cu_3O_{7-x}$ Thin Films)

  • ;;위창환;강병원;오상준;이성익
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.62-66
    • /
    • 2009
  • Introduction of proper impurity into $YBa_2Cu_3O_{7-x}$ (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of $Y_2O_3$ nanoparticles on the critical current density $J_c$ of the YBCO thin films. The $Y_2O_3$ nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/$Y_2O_3$/LAO or $Y_2O_3$/YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied ($780^{\circ}C$ and $800^{\circ}C$) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of $780^{\circ}C$ created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. $J_c$ values of the YBCO films with $Y_2O_3$ particles were either remained nearly the same or decreased for the samples in which YBCO is grown at $780^{\circ}C$. On the other hand, $J_c$ values were enhanced for the samples in which YBCO is grown at higher temperature of $800^{\circ}C$. The difference in the effect of $Y_2O_3$ can be explained by the fact that the higher deposition temperature of $800^{\circ}C$ reduces intrinsic pinning centers and $J_c$ is enhanced by introduction of artificial pinning centers in the form of $Y_2O_3$ nanoparticles.

  • PDF

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • 제1권3호
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Superconducting properties of MgB2 superconductors in-situ processed using various boron powder mixtures

  • Kang, M.O.;Joo, J.;Jun, B.H.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.45-50
    • /
    • 2021
  • In this study, the effect of the size of B powder on the critical current density (Jc) of MgB2 prepared by an in situ reaction process was investigated. Various combinations of B powders were made using a micron B, ball-milled B and nano B powders. Micron B powder was reduced by ball milling and the milled B powder was mixed with the micron B or nano B powder. The mixing ratios of the milled B and micron or nano B were 100:0, 50:50 and 0:100. Non-milled micron B powder was also mixed with nano powder in the same ratios. Pellets of (2B+Mg) prepared with various B mixing ratios were heat-treated to form MgB2. Tc of MgB2 decreased slightly when the milled B was used, whereas the Jc of MgB2 increased with increasing amount of the milled B or the nano powder. The used of the milled B and nano B power promoted the formation MgB2 during heat treatment. In addition to the enhanced formation of MgB2, the use of the powders reduced the grain size of MgB2. The use of the milled and nano B powder increased the Jc of MgB2. The highest Jc was achieved when 100% nano B powder was used. The Jc enhancement is attributed to the high volume fraction of the superconducting phase (MgB2) and the large grain boundaries, which induces the flux pinning at the magnetic fields.