• Title/Summary/Keyword: Azospirillum

Search Result 40, Processing Time 0.03 seconds

Control of Aflatoxin Production of Aspergillus flavus by Inghbitory Action of Antagonistic Bacteria

  • Cho, Jung-Il;Hong, Kwang-Won;Kang, Kil-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.154-160
    • /
    • 2000
  • Aflatoxin B1 is known as the most potent mycotoxin produced by several fungi. It has been demonstrated to be not only carcinogenic but teratogenic and mutagenic as well in humans. To prevent or inactivate aflatoxins, several chemical of physical methods were tested for ammoniation, using insecticides as an wxample, but they were unsuitable for food products. On the contrary, biological control by antagonistic microorgani는 is and ideal method. In order to control aflatoxin B1 biologically, the antagonists #07, #63, #75, #74, and #61 were separated from various samples by using the antagonistic activity test. Among them, culture filtrate part A (non heat-treated) of #63 and #74 on aflatoxin B1 produced by Aspergillus fkavus were shown to be 95% and 75%, respectively. Based on the morphological characteristics, #63 was deduced as an Azospirillum sp.

  • PDF

Impact of Surface Fire on the Dynamics of$N_2$- Fixing and P - Solubilizing Microbial Population in Natural Grassland Soils, Southern India

  • Manian, S.;S. Paulsamy;K. Senthilkumar;Kil, Bong-Seop
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.93-100
    • /
    • 2002
  • Dynamics of certain $N_2$fixing bacteria such as Rhizobium, Azospirillum and Azotobactor, nodule number in dominant legume, Atylosia trinervia, P-solubilizing bacteria, actinomycetes and fungi were studied in unburned and burned site of natural grassland, southern India. Population of $N_2$- fixing bacteria, P-solubilizing bacteria, fungi and nodule number in legume increased significantly in burned sites. On the other hand, the actinomycetes population remained unchanged. Thirty six species of fungi with tricalcium phosphate solubilizing ability were recorded. The most efficient P-solubilizing fungi recognised in the soils of the study sites are Absidia ramosa, Gongronella butlerii, Mortieralla spinosa, Mucor racemosus, Rhizopus nigricans, R. stolonifer, R. oryzae, Aspergillus fumigatus, A. nidulans, A. niger Theilavia terricola and Cheatomium lunasporium.

  • PDF

Identification and Characterization of Bdellovibrio bacteriovorus, a Predator of Burkholderia glumae

  • Song, Wan-Yeob
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2004
  • Six strains of an obligate predatory bdellovibrio isolate that preys on Burkholderia glumae in rice paddy field water and rhizosphere soil, were identified and characterized. The numbers of Bdellovibrio cells varied from $3.2{\times}10^3$ to $9.2{\times}10^3$ plaque-forming unit/g after enrichment in cells of B. glumae. Prey range tests with six Bdellovibrio strains and 17 prey strains of rice-pathogenic, antibiosis-related, or nitrogen-fixing bacteria resulted in unique predation patterns in related prey cells. Strain BG282 had the widest prey range on 7 plant pathogenic bacteria among the 17 prey strains tested. However, no predation occurred with strains of Azospirillum brasilense, Paenibacillus polymyxa, Pseudomonas fluorescens, P. putida, and Serratia marcescens that are associated with antibiosis or nitrogen fixation in the rice ecosystem. Identification was confirmed by the presence of typical bdelloplast in the prey cells of B. glumae and by a PCR assay using B. bacteriovorus-specific primers. Furthermore, 16S rDNA sequencing of the six bdellovibrio strains showed a homology range of 97.2% to 99.2% to the type strain of B. bacteriovorus.

Impact of Surface Fire on the Dynamics of N2- Fixing and P - Solubilizing Microbial Population in Natural Grassland Soils, Southern India

  • Manian, S;Paulsamy, S.;Senthilkumar, K.;Kil, Bong-Seop
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.227-234
    • /
    • 2002
  • Dynamics of certain $N_2$ fixing bacteria such as Rhizobium, Azospirillum and Azotobactor, nodule number in dominant legume, Atylosia trinervia, P-solubilizing bacteria, actinomycetes and fungi were studied in unburned and burned site of natural grassland, southern India. Population of $N_2$ - fixing bacteria, P-solubilizing bacteria, fungi and nodule number in legume increased significantly in burned sites. On the other hand, the actino-mycetes population remained unchanged. Thirty six species of fungi with tricalcium phosphate solubilizing ability were recorded. The most efficient P-solubilizing fungi recognised in the soils of the study sites are Absidia ramosa, Gongronella butlerii, Mortieralla spinosa, Mucor racemosus, Rhizopus nigricans, R. stolonifer, R. oryzae, Aspergillus fumigatus, A. nidulans, A. niger, Theilavia terricola and Cheatomium lunasporium.

Nitrogen Biofixing Bacteria Compensate for the Yield Loss Caused by Viral Satellite RNA Associated with Cucumber Mosaic Virus in Tomato

  • Dashti, N.H.;Montasser, M.S.;Ali, N.Y.;Bhardwaj, R.G.;Smith, D.L.
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2007
  • To overcome the problem of the yield reduction due to the viral satellite mediated protection, a culture mix of three nitrogen-fixing bacteria species of the genus Azospirillum (A. brasilienses N040, A. brasilienses SP7, and A. lipoferum MRB16), and one strain of cyanobacteria (Anabena oryzae Fritsch) were utilized as biofertilizer mixture in both greenhouse and field experiments. When protected plants were treated with biofertilizer mixtures, the fruit yield of biofertilized plants increased by 48% and 40% in a greenhouse and field experiment, respectively, compared to untreated plants inoculated with the protective viral strain alone. Polyacrylamide gel electrophoresis (PAGE) analysis of total nucleic acid (TNA) extracts revealed that biofertilization did not affect the accumulation of the viral satellite RNA (CARNA 5) that is required for plant protection against other destructive viral strains of CMV. The yield increment was a good compensation for the yield loss caused by the use of the protective viral strain associated with CARNA 5.

Growth and Foliar Constituents of Mulberry ($M_5$) Cultivated under Organic Based Nutrient Management

  • Rashmi, Krishnegowda;Shankar, Maruvanahalli Ankegowda;Shashidhar, Kaluvarahalli Ramanna;Narayanaswamy, Talagavara Kempaiah
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.165-169
    • /
    • 2009
  • A field experiment to evaluate the effect of application of different organic manures and inorganic fertilizers on growth, yield and quality of leaf was studied during 2004-05 has showed that, the application of 10 kg each of Azospirillum brasilense and Aspergillus awamori+20% each of recommended N through compost+green manure (Glyricidia maculata)+castor cake+vermicompost+Urea and remaining P and K through fertilizers ($T_{11}$) has recorded significantly higher leaf yield (250 g/ plant and 34.70 tonnes/ha/yr, respectively) with improvement in growth characters as compared to control. Leaf quality status was also improved in terms of N (3.19%), P (1.97%), K (1.28%), total soluble protein (8.39 mg/ml), total soluble sugars (14.40 mg/ml), secondary nutrients viz., Ca (3.00%), Mg (0.60%), S (0.35%) and micronutrients viz., Cu (0.410 ppm), Mn (0.454 ppm) and Zn (0.112 ppm) contents. The mulberry grown with 20 tonnes of compost+300:120:120 Kg of NPK/ha/year through fertilizer ranked second for growth and foliar constituents.

Effect of Repetitive Redox Transitions to Soil Bacterial Community and its Potential Impact on the Cycles of Iron and Arsenic (비소오염토양에서 반복적인 Redox 환경 변화가 토양 미생물 군집과 비소 및 철의 순환에 미치는 영향)

  • Park, Sujin;Kim, Sanghyun;Chung, Hyeonyong;Chang, Sun Woo;Moon, Heesun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • In a redox transition zone, geochemical reactions are facilitated by active bacteria that mediate reactions involving electrons, and arsenic (As) and iron (Fe) cycles are the major electron transfer reactions occurring at such a site. In this study, the effect of repetitive redox changes on soil bacterial community in As-contaminated soil was investigated. The results revealed that bacterial community changed actively in response to redox changes, and bacterial diversity gradually decreased as the cycle repeated. Proportion of strict aerobes and anaerobes decreased, while microaerophilic species such as Azospirillum oryzae group became the predominant species, accounting for 72.7% of the total counts after four weeks of incubation. Bacterial species capable of reducing Fe or As (e.g., Clostridium, Desulfitobacterium) belonging to diverse phylogenetic groups were detected. Indices representing richness (i.e., Chao 1) and phylogenetic diversity decreased from 1,868 and 1,926 to 848 and 1,121, respectively. Principle component analysis suggests that repetitive redox fluctuation, rather than oxic or anoxic status itself, is an important factor in determining the change of soil bacterial community, which in turn affects the cycling of As and Fe in redox transition zones.

Distribution and Properties of Soil Microorganisms Isolated from Representative Plant Communities of Mt. Paektu (백두산의 식생에 따른 토양 미생물의 분포 및 특성)

  • 성치남;백근식;김종홍
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_2
    • /
    • pp.575-583
    • /
    • 1998
  • Physicochemical factors, microbial population size and the properties of the bacterial isolates were assessed to find out the nature of soil ecosystem of Mt. Paektu. Samples were obtained from the surface layer of soils on which specific plant community is developed. Average content of moisture, organic matter and avaiable phosphate of the soils were 21.6%, 17.3% and 2.48mg/100g, respectively. These values were similar to those of developing forest soils, but were slightly lower than those of climax ecosystem such as Piagol in Mt. Chiri. The population size of soil bacteria ranged from 2.7 to $202.5{\times}10^5$ CFU/g.dry soil, and the size is somewhat dependent on the content of moisture and oranic matter of the forest soil. A large number of bacteria was able to decompose macromolecules such as starch, elastin and gelatin. While the distribution rate of resistant bacteria to antibiotics was high, that to toxic chemicals was low. This means that the competition between microorgani는 predominate over the interference with artificial behaviour such as spread of pesticides in the surveyed region. Bacterial species composition of each soil was comparatively simple. Pseudomonas, Agrobacterium, Flavobacterium and Xanthomonas which are Gram-negative short rods were widely distributed in the forest soils. The endospore forming Bacillus species were also main constituents of the soil microflroa. any one of the strains was not identified as Azospirillum or Micrococcus which are known to be one of major constituents of the forest soil. for the correct identification of isolates chemotaxonomic studies will be proceeded, and the strains are to be stored in the Type collection Center.

  • PDF

Research Trends on Plant Associated Beneficial Bacteria as Biofertilizers for Sustainable Agriculture: An Overview (지속농업을 위한 생물비료로서의 유용세균관련 식물검정 연구 개관)

  • Sa, Tongmin;Chauhan, Puneet Singh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.20-28
    • /
    • 2009
  • The sustainability of conventional agriculture which is characterized by input dependent and ecologically simplified food production system is vague. Chemicals and present practices used in agriculture are not only costly but also have widespread implications on human and animal health, food quality and safety and environmental quality. Thus there is a need for alternative farming practices to sustain food production for the escalating population and conserve environment for future generations. The present research scenario in the area of plant microbe interactions for maintaining sustainable agriculture suggests that the level of internal regulation in agro-ecosystems is largely dependent on the level of plant and microbial diversity present in the soil. In agro-ecosystems, biodiversity performs a variety of ecological services beyond the production of food, including recycling of nutrients, regulation of microclimate and local hydrological processes, suppression of undesirable organisms and detoxification of noxious chemicals. Controlling the soil microflora to enhance the predominance of beneficial and effective microorganisms can help improve and maintain soil chemical and physical properties. The role of beneficial soil microorganisms in sustainable productivity has been well construed. Some plant bacteria referred to as plant growth-promoting rhizobacteria (PGPR) can contribute to improve plant growth, nutrient uptake and microbial diversity when inoculated to plants. Term PGPR was initially used to describe strains of naturally occurring non-symbiotic soil bacteria have the ability to colonize plant roots and stimulate plant growth PGPR activity has been reported in strains belonging to several other genera, such as Azotobacter, Azospirillum, Arthrobacter Bacillus, Burkhokderia, Methylobacterium, and Pseudomonas etc. PGPR stimulate plant growth directly either by synthesizing hormones such as indole acetic acid or by promoting nutrition, for example, by phosphate solubilization or more generally by accelerating mineralization processes. They can also stimulate growth indirectly, acting as biocontrol agents by protecting the plant against soil borne fungal pathogens or deleterious bacteria. Present review focuses on some recent developments to evolve strategies for better biotechnological exploitation of PGPR's.

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -V. Effects of Co-inoculation of R. japonicum and A. lipoferum on the Effectiveness of Symbiotic Nitrogen Fixation with Soybean (우리 나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)V보(報) 대두근류균(大豆根瘤菌)과 협생질소고정균(協生窒素固定菌)과의 상호접종효과(相互接種效果))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Sang-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.307-315
    • /
    • 1988
  • This experiment was conducted to find out the effects of fertilizer-N and co-inoculation of the Rhizobium japonicum and the Azospirillum lipoferum on nodulation, $N_2$-fixation, and growth of soybean under in situ conditions. The results obtained were summarized as follows: 1. The yield of soybean dry matter was significantly greater in the R. japonicum alone, and the mixed inoculation of R. japonicum and A. lipoferum than those of un-inoculation. But inoculum applied by different strains did not significant effect on plant growth. The effects of nitrogen applied on soybean dry matter were higher in the ammonium sulfate than potassium nitrate, and decreased with increasing rates of two forms of nitrogen applied regardless of nitrogen source. 2. Acetylene redution activity was more increased in a single inoculation of R. japonicum than those of the mixed inoculation of the R. japonicum and the A. lipoferum, in cases of Danyeup cultivar, regardless of the form of combined nitrogen used. 3. Nodule mass and total nitrogenase activity per plant showed the positively significant effect in the interrelationship between dry matter of soybean and some factors related to nitrogen fixation efficiency. 4. The highest symbiotic effect in Danyeup cultivar was obtained when a single R. japonicum 84 Dy-1 strain was inoculated and fertilized with 18 mM potassium nitrate.

  • PDF