• Title/Summary/Keyword: Azobenzene

Search Result 162, Processing Time 0.025 seconds

Electrical Properties of 4th generational Dendrimer Containing Azo-group (아조 기능기를 가진 제4세대 덴드리머의 전기적 특성)

  • Yang, Ki-Sung;Ock, Jin-Young;Jung, Sang-Bum;Kim, Chung-Kyun;Park, Jae-Chul;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.904-907
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area(${\pi}-A$) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. This results suggest that the dendrimers with azobenzene group can be applied to high efficient nano-device of molecular level. And we measured the electrical properties by MIM and STM. The dendrimer with azobenzene group compared trans form and cis form at electrical properties.

  • PDF

Synthesis and Characterization of Novel Fullerene($C_{60}$) Derivative with Photoresponsive Azobenzene Group (광감응형 아조벤젠기를 갖는 신규 플러렌 유도체의 합성과 물성분석)

  • Han, Ki-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 2014
  • A novel fullerene derivative with photoresponsive azobenzene group was designed and synthesized, and its photoresponsive properties were reported. Starting from 4-nitrophenol, compound 1, which is containing fullerene moiety connected to azobenzene group through covalent linkage was synthesized by 5 steps. All the intermediates and the final compound were characterized by $^1H$, $^{13}C$-NMR, FAB-Mass or elemental analysis. Compound 1 exhibited the expected photoresponsive behavior. Chloroform solution($10^{-5}M$) of it served to maximize the absorption at 351 nm corresponding to the trans-azobenzene chromophore. Irradiation of this solution with 365 nm light resulted in photoisomerization to cis-azobenzene, as evidenced by decrease in the absorbance at 351 nm and an increase in absorbance at 450nm. A photostationary state was reached within about 150 s. Thermal reversion to the original spectrum was observed over the course of about 6 h at room temperature in the dark. However, exposure to bright sun light for about 5 s also effect almost complete reversion to the trans-isomer. This indicates that there is no strong steric influence on the trans-cis reversible isomerization of compound 1.

The Study of Thermal Effect Suppression and Wavelength Dependence of Azobenzene-coated FBG for UV Sensing Application (UV광 측정용 아조벤젠 코팅된 FBG의 열적 효과 제거 및 파장 의존성에 대한 연구)

  • Choi, Dong-Seok;Kim, Hyun-Kyoung;Ahn, Tae-Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.67-71
    • /
    • 2011
  • In the paper, we have demonstrated an azobenzene-coated fiber Bragg grating (FBG) for monitoring ultraviolet light (UV) intensity in remote measurement. The elasticity of the coated azobenzene polymer is changed by the UV light, which induces a center wavelength change corresponding to the change of the FBG's grating period. The wavelength shift resulting from both UV light and other light with the wavelength out of the UV range was about 0.18 nm. In order to improve the accuracy of the measurement, the center wavelength shift caused by radiant heat of the light source was sufficiently removed by using a thermal filter. The amount of the center wavelength shift was consequently reduced to 0.06 nm, compared to the result without the thermal filter. Also, the FBGs coated by using azobenzene polymer were produced by two different methods; thermal casting and UV curing. Considering temperature dependence, UV curing is more suitable than thermal casting in UV sensor application of the azobenzene-coated FBG. In addition, we have confirmed the wavelength dependence of the optical sensor by means of four different band pass filters. Thus, we found out that the center wavelength shift per unit intensity is 0.029 [arb. unit] as a maximum value at 370 nm wavelength region and that the absorption spectrum of the azobenzene polymer was very consistent with the wavelength dependence of the azobenzene-coated FBG.

Effects of the length of linkers in metal-azobenzene-metal junction on transmission and ON/OFF ratio

  • Yeo, Hyeonwoo;Kim, Han Seul;Kim, Yong-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.499-505
    • /
    • 2017
  • Photoisomerizing molecules which can transform their structure by the light irradiation have great deal for the application of photo-switching devices. And azobenzene is the representive type of the photoisomerizing molecules. It can transform their trans- structures into cis- structure as the light for certain wave lengths they receive. This property shows the potential of ON/OFF switching functionalization which can be used into the nano scale photo switch. Furthermore, many studies are interested in the organic linkers that connect the azobenzene and metal electrodes. We used S, $CH_2S$, $(CH_2)_4S$ as the linker to watch the influence of linkers for electronic properties. So We suggest a photoswitching device based on the vertical junction using the first-principles calculations with density functional theory and non-equilibrium Greens function (NEGF). By analyzing the electronic structure and tunneling current caused by the structural difference of the system between cis- and trans- azobenzene, the difference in switching mechanism, ON/OFF ratio and transmission will be watched as the linker changes. And finally We will suggest which linker would be the better for the optimal device architecture which can achieve high control of the ON/OFF photocurrent ratio. This result will show the potential of azobenzene-based photoswitch and provide the critical insight in constructing the optimal device architecture.

  • PDF

A Study on the Electrical Properties of Phospholipid and Azobenzene Mixed Films (인지질-아조벤젠 혼합막의 전기특성에 관한 연구)

  • Cho, S.Y.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1702-1704
    • /
    • 2000
  • Molecular cis-trans switching in mono and multilayer systems containing azobenzene is of particular interest in physics. chemistry and electronics. because of the possible application of the switching. Molecular swiching in phospholipid and azobenzene mixed monolayers on a water surface was examined by Maxwell displacement current(MDC) measurements. As a result. It's phtoisomerization progressed by 8A5H in mixed films.

  • PDF

Protection Method for Diameter-downsized Fiber Bragg Gratings for Highly Sensitive Ultraviolet Light Sensors

  • Seo, Gyeong-Seo;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.221-225
    • /
    • 2018
  • We suggested the use of miniature hollow glass tubes having high ultraviolet (UV) transmission characteristics for the protection of optical-fiber-type UV sensors. We have recently proposed a highly sensitive optical sensor in the UV spectral range, using a fiber Bragg grating (FBG) coated with an azobenzene polymer as the photoresponsive material. In this study, we used UV-transparent miniature glass tubes to protect the etched FBG with the azobenzene polymer coating. This technique will be very useful for protecting various fiber-based UV sensors.

A Study on the Physical Properties of Functional LB Monolayers (기능성 LB단분자막의 물성에 관한 연구)

  • Song, Jin-Won;Shin, Hoon-Kyu;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.404-407
    • /
    • 2003
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understand. Photoisomerization in monolayers of a novel azobenzene compound, azobenzene dendrimer, was investigated for the first time by means of the absorption spectrum and Maxwell displacement current (MDC) technique. Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. According to the absorption spectrum, trans-to-cis conversion ratio was estimated to the third generation of azobenzene dendrimer deposited onto a glass substrate. Temperature-dependent induced charge with trans-cis isomerization was also measured by means of MDC technique.

  • PDF

Effect of Temperature on Photoinduced Reorientation of Azobenzee Chromophore in the Side Chain Copolymers

  • 최동훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1010-1016
    • /
    • 1999
  • We synthesized the photoresponsive side chain polymers containing aminonitro azobenzene for studying the effect of temperature on photoinduced birefringence. Four different copolymers were prepared using methacrylate, α-methylstyrene, and itaconate monomer. Photoisomerization was observed under the exposure of UV light using UV-VIS absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The change of the birefringence was observed with increasing the sample temperature under a continuous irradiation of excitation light. We could estimate the activation energy of molecular motion in thermal and photochemical mode. Besides the effect of glass transition temperature on the activation energy, we focused our interests on the effect of geometrical hindrance of polar azobenzene molecules and cooperative motion of environmental mesogenic molecules in the vicinity of polar azobenzene molecules.