• 제목/요약/키워드: Azo-dye

검색결과 135건 처리시간 0.024초

다양한 염료의 탈색이 가능한 목재부후균 분리 (Isolation of a Wood-rotting Fungus to Decolorize a Wide Range of Structurally Different Synthetic Dyes.)

    • 한국미생물·생명공학회지
    • /
    • 제31권3호
    • /
    • pp.301-306
    • /
    • 2003
  • Twenty-one different fungi were tested for their ability to decolorize a wide range of structurally different dyes. Twenty fungal strains were isolated from fruiting bodies which were collected at the Kwangneung National Arboretum, Korea. One fungal strain were isolated from a rotting wood at Soongsil University, Korea. Nine kinds of dyes were used: three anthraquinone dyes and six azo dyes. The five fungal strains, Laetiporus sulphureus, Polyporus arcularius. Auricularia polytricha, Stereum ostrea, and Bjerkandera sp. UK-l showed decolorization ability. Except Auricularia polytricha, the four fungal strains were wood rotting fungi, and belonged to Aphyllophorales. Bjerkandera sp. UK-I, which was a white rot fungus, could decolorize all kinds of dyes tested in this study, indicating this fungus is one of candidates for applying in biological methods of dye waste treatment.

트리페닐메탄계와 아조계 색소를 탈색할 수 있는 Klebsiella pneumoniae WL-5의 분리 및 특성 (Isolation and Characterization of Klebsiella pneumoniae WL-5 Capable of Decolorizing Triphenylmethane and Azo Dyes)

  • 우징;이영춘
    • 생명과학회지
    • /
    • 제18권10호
    • /
    • pp.1331-1335
    • /
    • 2008
  • 여러 가지 난분해성 색소에 대하여 탈색능을 나타내는 Klebsiella pneumoniae WL-5이 염색폐수처리장의 활성슬러지로부터 분리되었다. 이 세균은 정치배양과 at pH 6-8 및 $30-35^{\circ}C$에서 높은 탈색능을 나타내었다. Congo Red색소에 대해서는 $200\;{\mu}M$ 농도에서 12시간 배양하였을 때 90% 이상이 탈색되었고, Malachite Green, Brilliant Green, Reactive Black-5에 대해서는 $10\;{\mu}M$ 농도에서 80% 이상이 탈색되었지만, Reactive Red-120, Reactive Orange-16, Crystal Violet에 대해서는 $10\;{\mu}M$ 농도에서 각각 46%, 25%, 13%의 비교적 낮은 탈색능을 나타내었다. 트리페닐메탄계 색소는 세포표면에의 흡착에 의한 탈색을 나타내었고, 아조계 색소는 지금까지 알려져 있지 않는 새로운 효소반응계에 의해서 탈색된다는 것을 제시하였다.

유기 염료-무기 실리카 하이브리드 안료의 제조와 분산잉크로서 응용 (Preparation of Organic Dye-Inorganic Silica Hybrid Pigment and It's Application for Inkjet Dispersion Ink)

  • 전영민;김종규;공명선
    • 한국재료학회지
    • /
    • 제16권7호
    • /
    • pp.422-429
    • /
    • 2006
  • Studies were performed on preparation of organic-inorganic hybrid silica dye in a dispersing ink system. The silica was subjected to surface modification using 3-aminopropyltrimethoxysilane (APTMS) in order to promote the chemical reactivity of the raw silica. On the surfaces of the aminosilane-functionalised silica, red vinylsulfone-containing azo dye was adsorbed. The dye was found to have chemically reacted with the aminosilane-grafted silica surface, which was proven by FT-IR spectra. Studies on morphology and microstructure were performed employing scanning electron microscopy. The SEM micrographs and particle size distributions showed that a homogeneous pigment can be obtained employing silica as a core. Particle size distribution was also examined using the technique of dynamic light scattering. The ensuing pigment was subjected to various physicochemical evaluation such as inkjet property, storage stability, color change as inkjet ink using printer, spectrophotometric, microscopic techniques. Studies on hybrid dyes from the silica surface demonstrated that, in general, stable pigments for inkjet dispersion ink were obtained.

A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye

  • Shokrollahzadeh, Soheila;Abassi, Masoud;Ranjbar, Maryam
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.513-520
    • /
    • 2019
  • In this investigation, nano ZnO was sonochemically synthesized by a novel method using a methionine precursor. A narrow size distribution (41-50 nm) of nano ZnO was achieved that was immobilized on perlite and applied as a catalyst in catalytic ozonation. The catalyst was characterized by fourier transform infrared spectroscopy, BET surface area, and field emission scanning electron microscope. The ozonation of recalcitrant Remazol black 5 (RB5) di-azo dye solution by means of the synthesized catalyst was investigated in a bubble column slurry reactor. The influence of pH values (7, 9, 11), catalyst dosage (8, 12, 15, $20g\;L^{-1}$) and reaction time (10, 20, 30, 60 min) was investigated. Although the dye color was completely removed by single ozonation at a higher reaction time, the applied nanocatalyst improved the dye declorination kinetics. Also, the degradation of the hazardous aromatic fraction of the dye was enhanced five-times by catalytic ozonation at a low reaction time (10 min) and a neutral pH. The second-order kinetics was best fitted in terms of both RB5 color and its aromatic fraction removal. The total organic carbon analysis indicated a significant improvement in the mineralization of RB5 by catalytic ozonation using the nano-ZnO/perlite catalyst.

LCD Color Filter용 Hybrid Azo Colorants 합성 및 특성 연구 (Synthesis and Characterization of Hybrid Azo Colorants for LCD Color Filter)

  • 최우근;정연태
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.528-533
    • /
    • 2013
  • We focused on the development of red azo colorants with high thermal stability and good solubility for LCD color filter in this research. For the synthesis of hybrid azo colorants, we used the couplers of aniline, naphthol and benzoimidazol functional group. The synthesized hybrid azo colorants were charaterized by using NMR, UV/visible spectroscopy, FT-IR, EA and TGA. They represented the maximum absorption wavelengths which are longer than 500 nm in UV/visible spectrum. So they were confirmed to be suitable for red colorants of LCD color filter. Azo compound (1a, 1b) with aniline functional group had good solubility in organic solvents such as acetone, methanol, chloroform and PGMEA. Moreover azo compounds (1c, 1d and 1e) with naphthol and benzoimidazolone functional group gave excellent thermal stability higher than $250^{\circ}C$ in TGA thermograms.

Azo 염료의 분해를 위한 호알카리성 균주의 분리 및 배양조건의 최적화 (Isolation and Optimization of Cultivating Conditions of Alkalophilic Strains for Biodegradation of Azo Dye)

  • 김정목;정현채;권오진
    • KSBB Journal
    • /
    • 제14권6호
    • /
    • pp.718-723
    • /
    • 1999
  • 알카리성 염색가공폐수를 처리하기 위햐여 아조염료인 Acid Red 1을 분해하는 호알카리성 균을 자연계에서 분리하였으며, 반응표면분석법인 SAS(statistical analysis system)프로그램을 이용하여 최적배양조건을 조사하였다. 염색공단 폐수처리장에서 배출되는 방류수 및 하천토양을 시료로 하여 알카리성(pH 10.0)배지에 성장하는 균 15종을 순수분리하였다. 그 중 탈색율이 가장 우수한 균주 하나를 선별하여 AR-1로 명명하였다. 탄소원(sucrose, fructose, galactose), 질소원(polypeptone, yeast extract) 및 인산원($K_2HPO_4$)이 분리균의 성장 및 탈색율에 미치는 영향을 조사한 결과, 1.0% fructose, 1.0% polypeptone, 1.0% yeast extract, 0.5% $K_2HPO_4$이 최적의 조건으로 나타났다. 반응표면분석에 의하여 염료의 생분해조건을 최적화하고자 배양온도와 배양시간에 따른 탈색율과 균성장의 특성을 모니터닝하였다. 탈색율은 34.73$^{\circ}C$에서 12.96시간, 균성장은 34.77$^{\circ}C$에서 12.97시간 배양시 각각 최적인 것으로 나타났다. 한편, 균성장과 탈색율을 다같이 만족할 수 있는 최적배양조건은 32.86~36.36$^{\circ}C$, 10.96~15.75시간으로 각각 나타났다.

  • PDF

Molecular identification of dye degrading bacterial isolates and FT-IR analysis of degraded products

  • Khan, Shellina;Joshi, Navneet
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.561-570
    • /
    • 2020
  • In the present study, dye decolorizing bacteria were isolated from water and soil samples, collected from textile industries in Jodhpur province, India. Two bacterial species namely, Bacillus pumilis and Paenibacillus thiaminolyticus were screened and identified based on biochemical characterization. The degradation efficiency of these two microorganisms was compared through optimization of pH, incubation time, initial dye concentration and inoculum size. B. pumilis and P. thiominolyticus were able to degrade 61% and 67% Red HE3B, 81% and 75% Orange F2R, 49.7% and 44.2% Yellow ME4GL and 61.6% and 59.5% Blue RC CT dyes of 800mg/l concentration respectively. The optimum pH and time were found to be 8 within 24 hours. The FT-IR analysis confirmed that microorganisms were able to degrade toxic azo dyes into a non-toxic product as proved through structural modifications to analyze chemical functions in materials by detecting the vibrations that characterize chemical bonds. It is based on the absorption of infrared radiation by the microbial product. Therefore, Bacillus pumilis and Paenibacillus thiaminolyticus are a promising tool for decolorization of dyes due to its potential to effectively decolorize higher azo dye concentrations (10-800 mg/L) and can be exploited for bioremediation.

수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거 (Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma)

  • 조진오;이상백;목영선
    • 공업화학
    • /
    • 제24권5호
    • /
    • pp.544-550
    • /
    • 2013
  • 본 연구에서는 소수성 다공질 세라믹관이 결합된 수중 유전체장벽방전 플라즈마 반응기를 이용하여 모사 염색폐수의 색도저감을 조사하였다. 플라즈마에 의해 생성되는 활성성분들은 수명이 매우 짧으므로 생성되는 즉시 물과 접촉시켜야 효과적인 폐수처리가 가능하며, 또한 반응속도를 증가시키기 위해서는 기/액 접촉면적이 커야 하는데, 본 연구의 반응기는 두 가지 목적을 동시에 이룰 수 있다. 아조 염료로는 amaranth, 그리고 플라즈마 생성을 위한 기체로는 공기가 사용되었으며, 방전전력, 기체 유량, 용존 음이온, 염료 초기농도 등 색도 제거에 미치는 다양한 변수의 영향이 평가되었다. 기체유량이 $1.5Lmin^{-1}$일 때, 플라즈마 기체가 염색폐수와 가장 효과적으로 접촉하였으며, 색도 제거가 가장 빠르게 일어났다. 염료 초기농도 $40.2{\mu}molL^{-1}$ (폐수부피 : 0.8 L), 방전전력 3.37 W의 조건에서 색도를 99% 이상 제거하는데 약 25 min이 소요되었다. 그밖에 염료의 초기농도가 낮을수록, 방전전력이 높을수록 색도 제거 속도가 증가하는 것으로 나타났다. 염소이온이 존재할 경우 색도 제거 속도가 빨라졌으나, 질산이온은 색도 제거 속도에 영향을 주지 않았다.

Syntheses, Spectral, Surface Morphological and Gamma Ray Irradiation Studies of Some Oxomolybdenum(V) and Dioxomolybdenum(VI) Complexes of an Azo Dye Derived from 4-aminoantipyrine

  • Nair, M.L. Harikumaran;Appukuttan, Anju.S.
    • 대한화학회지
    • /
    • 제56권2호
    • /
    • pp.217-227
    • /
    • 2012
  • Syntheses of some novel oxomolybdenum(V) and dioxomolybdenum(VI) complexes with an azo dye methoxyphenolazoantipyrine (HL) derived from 4-aminoantipyrine and 2-methoxyphenol are reported. The complexes have been characterized by elemental analyses, molar conductance, magnetic susceptibility data, IR, UV-Vis, $^1H$ NMR, EPR and FAB mass spectral studies. The physicochemical studies and spectral data indicate that HL acts as a bidentate chelating ligand. The complexes have the general formulae [$MoO(HL)XCl_2$] and [$MoO_2(HL)XCl$],where X=Cl, NCS or $NO_3$. All the complexes are found to have distorted octahedral geometry. Structural and morphological characterization of the complexes [$MoO(HL)Cl_3$](1) and [$MoO_2(HL)Cl_2$](4) before and after gamma ray irradiation,was performed by X-ray diffraction and scanning electron microscopy( SEM).The ligand and the complexes were screened for their possible antimicrobial activities.