• Title/Summary/Keyword: Azimuthal Angle

Search Result 77, Processing Time 0.022 seconds

A Study on the Velocity Characteristics of the Spray Formed by Two Impinging Jets (충돌 제트로 형성되는 분무의 속도 특성에 대한 연구)

  • Choo, Yeon-Jun;Seo, Kwi-Hyun;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.87-93
    • /
    • 2001
  • In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25 % lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40 % lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point.

  • PDF

A Study on the Velocity Characteristics of the Spray Formed by Two Impinging Jets (충돌 제트로 형성되는 분무의 속도 특성에 대한 연구)

  • Choo, Yeon-Jun;Oh, Dai-Jin;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25 % lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40% lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point.

  • PDF

A New Method for Measuring Azimuthal Anchoring Energy of Rubbed and UV-Exposed Polyimide Alignment Layers

  • Park, H.J.;Lee, W.K.;Kim, D.G.;Shin, D.C.;Woo, J.W.;Shin, H.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1619-1621
    • /
    • 2007
  • Novel optical measurement systems and improved cell configurations for measuring of azimuthal anchoring energies were developed. The difference between the mechanical rubbing direction and the optical easy axis that caused errors in the previous azimuthal anchoring energy measurement was compensated. In addition, the measurement accuracy of the twist angle and therefore the azimuthal anchoring energy was greatly enhanced. As a result, we were able to obtain valid azimuthal anchoring energy values for different alignment layers.

  • PDF

A Defect Free Bistable C1 SSFLC Devices

  • Wang, Chenhui;Bos, Philip J.
    • Journal of Information Display
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Recent progress in both low pretilt and high pretilt defect free C1 surface stabilized ferroelectric liquid crystal (SSFLC) devices is reviewed. First, by numerical calculation to investigate the balance between surface azimuthal anchoring energy and bulk elastic energy within the confined chevron layer geometry of C1 and C2, it is possible to achieve a zigzag free C1 state by low azimuthal anchoring alignment with a low pretilt angle. The critical azimuthal anchoring coefficient for defect free C1 state is calculated. Its relationship with elastic constant, chevron angle as well as surface topography effect are also discussed. Second, using $5^{\circ}$ oblique SiO deposition alignment method a defect free, large memory angle, high contrast ratio and bistable C1 SSFLC display, which has potential for electronic paper applications has also been developed. The electrooptical properties and bistability of this device have been investigated. Various aspects of defect control are also discussed.

Development of Tracking Algorithm for Floating Photovoltaic System

  • So, Byung-Moon;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2019
  • Since floating facility with mooring system can be moved and rotated by wind or other environmental variables, the error in azimuthal angle must be compensated using a GPS receiver and geo-magnetic sensor. Accordingly, when an existing photovoltaic tracking algorithm is applied to a floating photovoltaic system, it is difficult to do the optimal solar tracking. In this paper, an effective azimuthal angle algorithm is develop for the photovoltaic tracking in floating condition. In order to verify the developed algorithm, the prototype of the floating photovoltaic system is manufactured and the developed algorithm is applied to the system. The algorithm shows a good tracking feasibility on the prototype.

Birefringence Analysis of a Uniaxially Anisotropic Substrate Based on the Trajectory of the Transmission Ellipsometric Pseudoconstant in Polar Coordinates (유사 투과타원상수의 극좌표상 자취에 기반한 단축 이방성 기층의 복굴절 해석)

  • Yang, Sung Mo;Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2019
  • The trajectory of the transmission ellipsometric pseudoconstant ${\rho}=tan{\psi}_{\mu}e^{i{\Delta}_{\mu}}$ of a uniaxially anisotropic substrate like PET forms a circle in polar coordinates, as the phase-retardation angle is varied at a fixed azimuthal angle. The radius as well as the center's position of this circle are functions of the azimuthal angle only. This circle passes through the point (1,0), and the center of this circle is located on the real axis. These characteristics of the circle are examined analytically, and are utilized to derive simple expressions for the azimuthal angle and the phase-retardation angle of the uniaxially anisotropic substrate using the measured transmission ellipsometric constant. Finally, we confirm that the derived expressions are well applied to the analysis of the optical anisotropy of a PET film.

Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions II. 45° Incident Angle to Ni (100) Surface (산란 및 투과된 수소 이온의 분자 전산 연구 II. 니켈 (100) 표면의 45° 입사)

  • Suh, Soong-Hyuck;Min, Woong-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • In this paper molecular dynamics simulations were employed to investigate the structural and dynamic properties of hydrogen ions impacted on the Ni (100) surface with the $45^{\circ}$ incident angle. The initial kinetic energies of the hydrogen ion range from 100 to 1,600 eV. Together with the trajectory visualization of hydrogen ions, we computed scattering and penetration yields, mean energies and angles, and probability and energy distributions as a function of longitudinal and azimuthal directions. In the case of lower energy scattering ions, the multiple collision effects were found to be important to the third layers or lower. For higher energy penetrating ions, compared with the normal incident angle, it was significant the effective channeling effects through the Ni layers and the angle dependencies were indicated both in the longitudinal and the azimuthal angle directions.

  • PDF

Interferometric Measurements of the Thickness Distribution of the Liquid Sheet Formed by Two Impinging Jets (충돌 제트에 의해 형성되는 액막의 두께 특성에 관한 연구)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.214-223
    • /
    • 2000
  • In this research, a study on the characteristics of the liquid sheet formed by two impinging jets is presented. Using the interference phenomena of light, the thickness of the liquid sheet, which seems to heavily affect the size of the droplets, is measured and compared with existing theoretical modelings. Thinner liquid sheet is produced with larger impinging angle, smaller orifice diameter, and higher azimuthal angle but the jet velocity doesn't affect the thickness. More viscous liquid produces thicker liquid sheet. The theoretical modelings predict the same trend as the experiments but the thickness values are overestimated at low azimuthal angles. This difference is gradually decreased as the azimuthal angle is increased: The breakup mechanism of the droplets from the liquid sheet is visualized by a high speed camera. The crest around the edge of the liquid sheet is protruded with the accumulation of liquid at the end of protuberance, which contracts into a spherical shape and then becomes detached when the stem breaks down, producing large droplets with a few small size of satellites.

Basic Principle for Determining Azimuthal Anchoring Strength by using HAN/TN Two Domain Liquid Crystal Cell

  • Tanaka, Norihiko;Kimura, Munehiro;Akahane, Tadashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • We propose a novel technique for evaluating the azimuthal anchoring strength of the alignment film on the nematic liquid crystal (LC). In our evaluation, a unique cell, which has two domain in one cell, was used; one is hybrid aligned nematic (HAN) region, the other is twsited nematic (TN) region (viz. HAN/TN two domain cell). From the comparison of director angles on the front substrate with each region, we are able to determine the angle between easy axis and real director axis on the front substrate. From this evaluation, the azimuthal anchoring strength was obtained accurately.

  • PDF

Organosiloxanes with molecular microrelief for liquid crystal alignment

  • Mazaeva, Vera G.;Belyaev, Victor V.;Timofeyev, Sergey N.;Min'ko, Anatoliy A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.948-950
    • /
    • 2009
  • A few organosilicon compounds (OC) - both cyclic and linear siloxanes with different structure of the substituents - have been synthesized. Properties of the LC anchoring on OC films have been measured. The OC investigated provide the homogeneous planar alignment with LC tilt angle in the range from $0.7^{\circ}$ to $1.9^{\circ}$. An increase of the microrelief depth results in a small increase of the tilt angle. The azimuthal anchoring is better for the films of the OC without molecular microrelief or the OC comprising polar groups.

  • PDF