• Title/Summary/Keyword: Azimuth tracking

Search Result 134, Processing Time 0.026 seconds

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

High efficiency tracking system design of photovoltaic using fuzzy control (퍼지제어를 적용한 태양광 발전의 고효율 추적시스템 설계)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yon;Jung, Byung-Jin;Chung, Dong-Hwa
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up. nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Orbit Determination of LEO Satellite using Ground Tracking Data (지상국 추적 데이터를 이용한 저궤도 위성의 궤도결정 특성 분석)

  • Jung, Ok-Chul;Choi, Su-Jin;Chung, Dae-Won;Kim, Eun-Kyou;Kim, Hak-Jung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.170-176
    • /
    • 2011
  • This paper analyzes the orbit determination results using azimuth and elevation angle from ground tracking data, which has the standard data interface format, GEOS-C. The ground tracking data is very useful for initial orbit determination after a satellite launch. In this paper, the quality of the measurement data has been investigated using a variety of real tracking passes, compared with the high precision orbit data of KOMPSAT-2. The accumulated tracking data from consecutive satellite-ground passes is processed for orbit determination using least square method. The accuracy of orbit determination result is also presented.

A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation (일사량 변화에 다른 전력손실을 고려한 새로운 태양광 추적 시스템 제어)

  • Park, Ki-Tae;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper proposes a novel tacking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV hacking system. The tracking system of sensor method used in a conventional PV power station is unable to exactly track a sun position when lacking in the intensity of radiation and has the problem is malfunction of tracking system by a rapidly changing climatic. The tracking system of program method spends too much energy on the unnecessary operation of tracking system because that is unable to adapt itself to a outside factor of climatic environment. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this pap proposes a novel control algorithm of the tracking system. Also, this paper is analyzed efficiency of traditional solar tracking method and proposed method, prove validity of proposed algorithm through demonstrable study.

The Development of the Solar Tracking System with High Accuracy by using LabVIEW (LabVIEW를 활용한 고정밀도 태양추적장치 개발)

  • Oh, Seung-Jin;Cho, Yil-Sik;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-36
    • /
    • 2009
  • There have been many solar tracking systems developed for the high accuracy in solar tracking. One of the key components of any motion control system is software. LabVIEW offers an ideal combination of flexibility, ease-of-use and well-integration with other I/O pieces for developing solar tracking system. Real-time solar positions which vary with GPS's data are used simultaneously to control the solar tracker by a chain of operating modes between the open and closed loops. This paper introduces a step by step procedure for the fabrication and performance assessment of a precision solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CRD sensors are applied for the solar tracking system which play a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this paper demonstrate the accuracy of the present system in solar tracking and utilization.

  • PDF

Fuzzy Controller Development for Efficiency Improvement of Photovoltaic Tracking System using Sensor (센서방식 태양광 추적 시스템의 효율 향상을 위한 퍼지제어기 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Jung, Byung-Jin;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.217-218
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Development of Fuzzy Controller for High Performance Solar tracking of PV System (PV 시스템의 고효율 태양 추적을 위한 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.315-318
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy control order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Tracking System of Photovoltaic Generation Using DFC Controller (DFC 제어기를 이용한 태양광 발전의 추적시스템)

  • Jung, Byung-Jin;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.199-201
    • /
    • 2008
  • In this paper proposed the solar tracking system to use direct fuzzy control order to increase an output of the PV (Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a DFC(Direct Fuzzy Control)controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.