• 제목/요약/키워드: Axisymmetric Bump

검색결과 3건 처리시간 0.014초

Assessment of Reynolds Stress Turbulence Closures in the Calculation of a Transonic Separated Flow

  • Kim, Kwang-Yong;Son, Jong-Woo;Cho, Chang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.889-894
    • /
    • 2001
  • In this study, the performances of various turbulence closure models are evaluated in the calculation of a transonic flow over axisymmetric bump. k-$\varepsilon$, explicit algebraic stress, and two Reynolds stress models, i.e., GL model proposed by Gibson & Launder and SSG model proposed by Speziale, Sarkar and Gatski, are chosen as turbulence closure models. SSG Reynolds stress model gives best predictions for pressure coefficients and the location of shock. The results with GL model also show quite accurate prediction of pressure coefficients down-stream of shock wave. However, in the predictions of mean velocities and turbulent stresses, the results are not so satisfactory as in the prediction of pressure coefficients.

  • PDF

초음속 흡입구 유동의 수치모사 (Numerical Simulation of Supersonic Inlet Flow)

  • 곽인근;유일용;이승수;정석영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.133-137
    • /
    • 2009
  • Bleed 영역이 있는 흡입구 주위의 초음속 유동에 대한 수치 모사를 수행하였다. 이를 위하여 RANS(Reynolds Averaged Navier-Stokes) 방정식과 2-방정식 난류 모델 방정식을 기반으로 한 기존의 코드를 축대칭형으로 변환하고 bleed 경계 조건을 적용하였다. 본 논문에서는 개발한 코드를 검증하기 위해 범프(bump)와 경사충격파와 bleed 영역이 있는 평판 주위에서의 흐름에 대해 실험치 및 타 수치 해석 결과와 비교하였다. 개발한 코드를 이용하여 bleed 장치가 장착된 축대칭 초음속 흡입구 주변의 유동에 대한 수치 모사를 수행하였다.

  • PDF

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.