• Title/Summary/Keyword: Axial velocity gradient

Search Result 37, Processing Time 0.019 seconds

A study on the development of the velocity and temperature fields in a laminar flow through an eccentric annular ducts (偏心된 二重圓管의 環狀部를 지니는 層流流動에서의 連度場 및 溫度場의 確立에 대한 硏究)

  • 이택식;이상산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.861-869
    • /
    • 1986
  • A numerical study has been conducted on the development of the velocity and temperature fields in a laminar flow through an eccentric annular duct. A bipolar coordinates system is adopted, and a numerical program is developed to analyze 3-dimensional parabolic flow problems. In the analysis of the velocity field, the entrance length has been defined as the distance where the axial pressure gradient is greater than that of the developed velocity field by 5%. The dimensionless hydrodynamic entry length increases with increasing eccentricity. In the transverse flow fields, the reverse flow region along the wall due to the developing axial velocity near the entrance of the duct is found. In the analysis of the temperature field, the thermal entry length has been defined as the axial distance where the mean fluid temperature is 5% less than that of the developed temperature field. The dimensionless thermal entry length increases as eccentricity or Prandtl number increases. The overshoot of the mean Nusselt number over the developed value at the zero-temperature wall is encountered, and the rate of the overshoot increases with the increase of the eccentricity and Prandtl number.

A study on Flow and Heat Transfer Characteristics in a Duct with Periodic Pressure Gradient (주기적인 압력구배를 받는 덕트에서의 유동 및 열전달특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.369-381
    • /
    • 1992
  • Characteristics of flow and heat transfer have been studied numerically in a square duct with a periodic pressure gradient. The flow in a duct was assumed to be fully developed and constant heat flux was imposed at the surfaces of a square duct. The distributions of axial velocity and time-space averaged temperature are investigated with angular velocity and amplitude ratio at a given Reynolds number 1000. When the periodic pressure gradient was imposed axially in a duct, the reverse flow may be occurred near the duct wall. The magnitude of this reverse flow increases as the amplitude ratio increases or as the angular frequency decreases. In the ranges of the amplitude ratio and the angular velocity in present investigation, the ratio of the periodic time space averaged temperature to the nonperiodic space averaged temperature has been found to be greater than one. This means that the cooling effect at the duct walls deteriorates with a periodic situation compared with nonperiodic one.

The Effect of Annular Slit on a Compressible Spiral Jet Flow (스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구)

  • Cho, Wee-Bun;Baek, Seung-Cheul;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.

Numerical simulation of slit wall effect on the Taylor vortex flow with radial temperature gradient

  • Liu, Dong;Chao, Chang-qing;Zhu, Fang-neng;Han, Xi-qiang;Tang, Cheng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Numerical simulation was applied to investigate the Taylor vortex flow inside the concentric cylinders with a constant radial temperature gradient. The reliability of numerical simulation method was verified by the experimental results of PIV. The radial velocity and temperature distribution in plain and 12-slit model at different axial locations were compared, and the heat flux distributions along the inner cylinder wall at different work conditions were obtained. In the plain model, the average surface heat flux of inner cylinder increased with the inner cylinder rotation speed. In slit model, the slit wall significantly changed the distribution of flow field and temperature in the annulus gap, and the radial flow was strengthen obviously, which promoted the heat transfer process at the same working condition.

A Fundamental Study of the Subsonic Spiral Jet (아음속 스파이럴 제트 유동에 관한 기초적 연구)

  • Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

Flow in turbulent boundary layers with coriolis force (코리올리힘 이 作용하는 亂流境界層內 의 流動 에 관한 硏究)

  • 이규한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.181-189
    • /
    • 1985
  • The effect of the Coriolis force on the 2-D turbulent boundary layer which is developed in the side wall of the rotating rectangular flow channel was investigated. In this study, we measured mean velocities, turbulent velocity components(axial as well as lateral ones) and Reynolds stresses of the turbulent boundary layer. For high Reynolds number flows, the turbulent boundary layer without pressure gradient is hardly affected by the rotation. For low Reynolds number flows, however, the shearing stress at suction side decreases. Consequently, the velocity near the wall become slower so that the thickness of the viscous sublayer expands. On the other hand, the velocity near the wall at pressure side turns out increased.

Flow Characteristics of Turbulent Flow in the Exit Region of Join Stream Curved Duct (합류 곡관덕트 출구영역에서 난류유동의 유동특성)

  • Sohn, Hyun-Chull;Park, Sang-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2003
  • In the present steady the flow characteristics of turbulent steady flows were experimentally investigated in the exit region of join stream. The experimental was carry out to measure the velocity profiles of air in a square duct. For the measurement of velocity profiles, a hot-wire anemometer was used. The experimental results shows that the velocity profiles do not change behind the fully developed flow region , which is defined as dimensionless axial direction x/Dh=50. In addition, the gradient of shear stress distribution became stable as the flow reached progress downstream.

Numerical Analysis on the Characteristics of Temperature Distribution in an Active Regeneration DPF Type (강제 재생 방식 DPF 내부의 온도 분포 특성에 관한 수치해석)

  • Park, S.C.;Lee, H.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2011
  • This study analyzed on the characteristics of temperature distribution in an active regeneration DPF using computer simulation. In order to verify the boundary condition of analysis, results of temperature distribution in DPF are compared between experimental and computer simulation. Using this boundary condition, temperature distribution and filter's durability in DPF analyzed according to various operating conditions. The results of computational analysis are agreed well with experimental ones from the tendency of temperature distribution of axis and radius direction. The temperature increases and the axial temperature gradients in DPF according to velocity of exhaust gas are lowered as the high velocity of exhaust gas. But the temperature gradients of radius direction at exit side in DPF are grown as the high velocity of exhaust gas. The results according to inlet temperature of exhaust gas show that the increase ratios of temperature in DPF are grown as the high temperature of exhaust gas.