• Title/Summary/Keyword: Axial skeleton

Search Result 56, Processing Time 0.022 seconds

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Roles of GASP-1 and GDF-11 in Dental and Craniofacial Development

  • Lee, Yun-Sil;Lee, Se-Jin
    • Journal of Oral Medicine and Pain
    • /
    • v.40 no.3
    • /
    • pp.110-114
    • /
    • 2015
  • Purpose: Growth and differentiation factor (GDF)-11 is a transforming growth factor-${\beta}$ family member that plays important regulatory roles in development of multiple tissues which include axial skeletal patterning, palatal closure, and tooth formation. Proteins that have been identified as GDF-11 inhibitors include GDF-associated serum protein (GASP)-1 and GASP-2. Recently, we found that mice genetically engineered to lack both Gasp1 and Gdf11 have an increased frequency of cleft palate. The goal of this study was to investigate the roles of GDF-11 and its inhibitors, GASP-1 and GASP-2, during dental and craniofacial development and growth. Methods: Mouse genetic studies were used in this study. Homozygous knockout mice for Gasp1 ($Gasp1^{-/-}$) and Gasp2 ($Gasp2^{-/-}$) were viable and fertile, but Gdf11 homozygous knockout ($Gdf11^{-/-}$) mice died within 24 hours after birth. The effect of either Gasp1 or Gasp2 deletion in $Gdf11^{-/-}$ mice during embryogenesis was evaluated in $Gasp1^{-/-}$;$Gdf11^{-/-}$ and $Gasp2^{-/-}$;$Gdf11^{-/-}$ mouse embryos at 18.5 days post-coitum (E18.5). For the analysis of adult tissues, we used $Gasp1^{-/-}$;$Gdf11^{+/-}$ and $Gasp2^{-/-}$;$Gdf11^{+/-}$ mice to evaluate the potential haploinsufficiency of Gdf11 in $Gasp1^{-/-}$ and $Gasp2^{-/-}$ mice. Results: Although Gasp2 expression decreased after E10.5, Gasp1 expression was readily detected in various ectodermal tissues at E17.5, including hair follicles, epithelium in nasal cavity, retina, and developing tooth buds. Interestingly, $Gasp1^{-/-}$;$Gdf11^{-/-}$ mice had abnormal formation of lower incisors: tooth buds for lower incisors were under-developed or missing. Although $Gdf11^{+/-}$ mice were viable and had mild transformations of the axial skeleton, no specific defects in the craniofacial development have been observed in $Gdf11^{+/-}$ mice. However, loss of Gasp1 in $Gdf11^{+/-}$ mice occasionally resulted in small and abnormally shaped auricles. Conclusions: These findings suggest that both GASP-1 and GDF-11 play important roles in dental and craniofacial development both during embryogenesis and in adult tissues.

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression

  • Jin, Yuhao;Han, Lijun;Meng, Qingbin;Ma, Dan;Wen, Shengyong;Wang, Shuai
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-284
    • /
    • 2018
  • A detailed understanding of the mechanical behaviors for crushed coal rocks after grouting is a key for construction in the broken zones of mining engineering. In this research, experiments of grouting into the crushed coal rock using independently developed test equipment for solving the problem of sampling of crushed coal rocks have been carried out. The application of uniaxial compression was used to approximately simulate the ground stress in real engineering. In combination with the analysis of crack evolution and failure modes for the grouted specimens, the influences of different crushed degrees of coal rock (CDCR) and solidified grout strength (SGS) on the mechanical behavior of grouted specimens under uniaxial compression were investigated. The research demonstrated that first, the UCS of grouted specimens decreased with the decrease in the CDCR at constant SGS (except for the SGS of 12.3 MPa). However, the UCS of grouted specimens for constant CDCR increased when the SGS increased; optimum solidification strengths for grouts between 19.3 and 23.0 MPa were obtained. The elastic moduli of the grouted specimens with different CDCR generally increased with increasing SGS, and the peak axial strain showed a slightly nonlinear decrease with increasing SGS. The supporting effect of the skeleton structure produced by the solidified grouts was increasingly obvious with increasing CDCR and SGS. The possible evolution of internal cracks for the grouted specimens was classified into three stages: (1) cracks initiating along the interfaces between the coal blocks and solidified grouts; (2) cracks initiating and propagating in coal blocks; and (3) cracks continually propagating successively in the interfaces, the coal blocks, and the solidified grouts near the coal blocks. Finally, after the propagation and coalescence of internal cracks through the entire specimens, there were two main failure modes for the failed grouted specimens. These modes included the inclined shear failure occurring in the more crushed coal rock and the splitting failure occurring in the less crushed coal rock. Both modes were different from the single failure mode along the fissure for the fractured coal rock after grouting solidification. However, compared to the brittle failure of intact coal rock, grouting into the different crushed degree coal rocks resulted in ductile deformation after the peak strength for the grouted specimens was attained.

Characteristics of Engineered Soils (Engineered Soils의 특성)

  • Lee, Jong-Sub;Lee, Chang-Ho;Lee, Woo-Jin;Santamarina, J. Caries
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.129-136
    • /
    • 2006
  • Engineered mixtures, which consist of rigid sand particles and soft fine-grained rubber particles, are tested to characterize their small and large-strain responses. Engineered soils are prepared with different volumetric sand fraction, sf, to identify the transition from a rigid to a soft granular skeleton using wave propagation, $K_{o}-loading$, and triaxial testing. Deformation moduli at small, middle and large-strain do not change linearly with the volume fraction of rigid particles; instead, deformation moduli increase dramatically when the sand fraction exceeds a threshold value between sf=0.6 to 0.8 that marks the formation of a percolating network of stiff particles. The friction angle increases with the volume fraction of rigid particles. Conversely, the axial strain at peak strength increases with the content of soft particles, and no apparent peak strength is observed in specimens when sand fraction is less than 60%. The presence of soft particles alters the formation of force chains. While soft particles are not part of high-load carrying chains, they play the important role of preventing the buckling of stiff particle chains.

A Study of the Pattern of Skeletal Metastases and Renal Uptakes on Bone Scan in Renal Cell Carcinoma (골스캔상 신세포암의 골전이 양상과 신장섭취 형태에 관한 연구)

  • Chun, Hae-Kyung;Yang, Seoung-Oh;Shin, Joung-Woo;Won, Kyoung-Sook;Choi, Yun-Young;Ryu, Jin-Sook;Lee, Hee-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.524-531
    • /
    • 1996
  • Purpose : To evaluate the pattern- of skeletal metastases and to classify the pattern of renal uptakes on bone scans in renal cell carcinoma. Materials and Methods : We reviewed the bone scans of 158 patients with RCC established pathologically. In order to identify individual scan lesion as a bone metastasis, we reviewed all available correlative radiological studies, follow-up bone scans, and biopsies for each lesion. The metastatic bone lesions were divided into seven anatomic regions; skull, spine, shoulder girdle, sternum, ribs, pelvis, and long bones of extremities. The individual scan lesions were divided into two groups as the pattern of uptakes, hot and cold lesion. In addition, the contours and uptakes of kidneys with RCC were classified into 6 groups ; normal uptake, photon-deficient lesion, faint up-take with enlargement, uneven uptake with enlargement, lateralization with crescentic shape, and increased uptake. Results : Twenty out of 158(12.7%) patients with RCC at varying stages showed 71 metastatic bone lesions at presentation and on follow- up bone scans. Nearly 80% of all metastatic lesions were in the axial skeleton with predominantly increased uptake of the radioactivity However a considerable number(22.5%) showed cold lesions on bone scan. A half of bone scans revealed abnormal uptake of involved kidney and much more(82.4%) in case of bone metastases. Two common patterns of abnormal renal uptake were photon-deficient lesion (50%) and faint uptake with enlargement(24.3%). In four patients with bone pain or pathologic fracture, bone scans were useful for the serendipitious localization of previously unrecognized primary lesion of RCC as well as for the detection of bone metastases from RCC. Conclusion : The understanding of the pat-terns of skeletal metastases and renal uptakes on bone scans in RCC is important for the useful information about primary lesion(RCC) as well as detection of bone metastases.

  • PDF