• Title/Summary/Keyword: Axial effect

Search Result 1,905, Processing Time 0.042 seconds

The effect of internal axial forces of a cantilever beam with a lumped mass at its free end

  • Zhang, Jinfu
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.321-331
    • /
    • 2018
  • When a cantilever beam with a lumped mass at its free end undergoes free transverse vibration, internal axial forces are produced in the beam. Such internal axial forces have an effect on free transverse vibration of the beam. This effect is studied in this paper. The equations of motion for the beam in terms of the generalized coordinates including the effect are derived. The method for determining free transverse vibration of the beam including the effect is presented. In numerical simulations, the results of free transverse vibration of the free end of the beam including and not including the effect are obtained. Based on comparison between the results obtained, the conclusions concerning the effect are given.

Vehicle Shudder Associated with Axial Thrust Force of C.V.Joint For Automobile (자동차용 등속조인트의 AXIAL FORCE와 VEHICLE SHUDDER(I))

  • 오승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.198-208
    • /
    • 1996
  • The plunge joints of C.V. Joint for vehicle tend to produce a cyclic axial disturbance at a frequency of three of six times shaft speed, in which this distrubance caused by internal frictional effect is related to joint angle, rotational speed, torque, and joint size. This principal axial thrust force might make vehicle shuddered when coinciding with vehicle frequency of tranverse direction, and be one of reasons to have driver feel uncomfortable, unesay, while driving vehicle. The paper makes analysis of axial thrust force & vehicle shudder through computer simulation, comparing the result with experimental data, and reviewing the effect by changing of variables such as dimensions and driving conditions.

  • PDF

Overhang Effect on the Axial Flux Permanent Magnet Motor (AFPM 전동기의 오버행 효과에 관한 연구)

  • Woo, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.769-772
    • /
    • 2016
  • In this paper, the overhang structure was applied to the axial flux permanent magnet (AFPM) motor. This paper describes the overhang effect in the AFPM motor. Moreover, the overhang effect was analyzed according to the different overhang length and an optimal overhang structure was proposed. Finally, the proposed structure was applied to design, analysis and experiment of prototype motors. Through the comparison between 3D finite element analysis results and experimental ones, the validity of proposed structure is clarified.

A Study on the Moment-Curvature Relation of Hollow RC piers considering Tension Stiffening Effect (인장강성효과를 고려한 중공단면 교각의 모멘트-곡률 관계에 대한 연구)

  • Park Young Ho;Kim Se Hun;Choi Seung Won;Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.17-20
    • /
    • 2005
  • Moment-curvature relation of RC pier is influenced greatly in occurrence form of crack and difference is happened according to consideration existence and nonexistence of tension stiffening effect. However, studies considering these is very insufficient misgovernment. Also, it is sometimes unavoidable lap splice of axial reinforcement in plastic hinge region of RC piers. However, specific design standard about lap splice of axial reinforcement is unprepared real condition and study about effect that lap splice of axial reinforcement get in occurrence form of crack is insufficient misgovernment. Therefore, in this paper, experiments are performed with hollow RC piers that do lap splice of axial reinforcement by main variable. And this study present analytical method about moment-curvature relation of hollow RC pier that consider tension stiffening effect and analyze effect that lap splice of axial reinforcement gets in occurrence form of crack. Analytic method of moment-curvature relation of RC pier that present in this study shows very similar motion with experiment result and crack interval of RC pier is suffering dominate impact in the augmented reinforcement amount by lap splice and average crack interval decreases as lap splice ratio increases.

  • PDF

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

Effect of Axial Loads on Natural Frequencies of Timoshenko Beam (축하중이 티모센코 보의 고유진동수에 미치는 영향)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.580-586
    • /
    • 2011
  • This paper addresses the effect of transverse shear deformation and rotary inertia on the natural frequency of beams under axial loads. It has been reported in the author's paper using a finite element analysis that the Timoshenko effect in a rotating disk deceases and then increases again with increasing rotation speed. To validate the phenomenon, the simply-supported beams under uniform tension are selected in this study since they have exact solutions in vibration problem. The results show that the axial tension in beams would not make the Timoshenko effect decrease monotonically but could make the effect increase again unlike the results reported in the other studies for beams.

Experimental study of the Concentric Cylinder Flow with Various Axial Slit Wall (다양한 축방향 홈이 있는 동심원통 내부 유동에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.123-127
    • /
    • 2007
  • The effect of axial slit wall of outer cylinder on Taylor-Couette flow was experimentally investigated. The axial slits were azimuthally located along the inner wall of outer cylinder and the number of slits was 6, 9 and 18. The radius ratio and aspect ratio of the experimental models was 0.825 and 48, respectively. We used PIV method to measure the flow field and applied refractive index matching method to resolve the image distortion due to the complex model geometry. The results showed the effect of slit on the flow transition is increased as the number of slit increased. When the model has 6 slits, there were hardly the effect of axial slit wall and the flow transition happened at the same Reynolds number of plain smooth wall model case.

  • PDF

A study on bending strength of reinforced concrete filled steel tubular beam

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Tuohuti, Akenjiang
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.639-655
    • /
    • 2014
  • The mechanical characteristic of reinforced concrete filled steel tubular (RCFT) structures are differed from that of concrete filled tubular steel (CFT) structures because the reinforcement in RCFT largely affects the performance of core concrete such as ductility, strength and toughness, and hence the performance of RCFT should be evaluated differently from CFT. To examine the effect axial reinforcement on bending performance, an investigation on RCFT beams with varying levels of axial reinforcement is performed by the means of numerical parametric study. According to the numerical simulation results with 13 different ratios of axial reinforcement, it is concluded that the reinforcement has obvious effect on bending capacity, and the neutral axis of RCFT is different from CFT, and an evaluation equation in which the effect of axial reinforcement is considered for ultimate bending strength of RCFT is proposed.

Effect of axial load on flexural behaviour of cyclically loaded RC columns

  • Au, F.T.K.;Bai, Z.Z.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.261-284
    • /
    • 2006
  • The flexural behaviour of symmetrically reinforced concrete (RC) columns cast of normal- and high-strength concrete under both monotonic and cyclic loading is studied based on an analytical procedure, which employs the actual stress-strain curves and takes into account the stress-path dependence of concrete and steel reinforcement. The analysis is particularly extended into the post-peak stage with large inelastic deformation at various applied axial load level. The effect of axial load on their complete flexural behaviour is then identified based on the results obtained. The axial load is found to have fairly large effect on the flexural behaviour of RC columns under both monotonic and cyclic loading. Such effects are discussed through examination of various aspects including the moment-curvature relationship, moment capacity, flexural ductility, variation of neutral axis depth and steel stress.

Numerical Study of The Nozzle-Rotor Axial Gap Effect on the Supersonic Turbine Performance (충동형 초음속 터빈의 노즐-로터 축간극에 따른 성능변화 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.160-163
    • /
    • 2010
  • We performed three-dimensional CFD analysis to investigate the effect of the nozzle-rotor axial gap of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for five axial gaps using flow analysis program, $FLUENT^{TM}$. The results show that the axial gap between nozzle and rotor give the effect on the mass flow rates of tip leakage and the flow angle at the rotor outlet.

  • PDF