• 제목/요약/키워드: Axial Tension

검색결과 301건 처리시간 0.024초

Bi-2223/Ag 고온초전도 선재의 변형에 따른 임계전류 특성 (Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain)

  • 하홍수;오상수;하동우;심기덕;김상철;배성우;권영길;류강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.810-813
    • /
    • 2000
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT (Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It's inevitable to deform the superconducting tapes with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험 (Verification Studies for Field Peformance of Micropiling)

  • 구정민;이기환;조영준;최창호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF

Behaviour and design of structural steel pins

  • Bridge, R.Q.;Sukkar, T.;Hayward, I.G.;van Ommen, M.
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.97-110
    • /
    • 2001
  • Architectural steel structures with visible tension and compression members are becoming more prevalent as a popular form of construction that reflects the nature of the resistance to the applied loads. These members require the use of structural steel pins at their ends to ensure either axial tension or axial compression in the members. Structural pins have been used as a means of connection for centuries and it would appear that their behaviour is relatively well understood. However, the rules for the design of pins vary quite considerably from code to code and this has caused some confusion amongst consulting structural engineers operating internationally. To provide some insight into this problem, a comprehensive testing program has been carried to examine the influence of parameters such as pin diameter, material properties of the pin, thickness of the loading plates, material properties of the loading plates and the distance of the pin to the edge of the loading plates. The modes of failure have been carefully examined. Based on this study, modifications to current design procedures are proposed that properly take into account the different possible modes of failure.

축인장하(軸引張下)의 평판(平板)의 단부(段部) Fillet 근처(近處)의 Relieving Groove가 응력집중(應力集中)에 미치는 영향(影響) (Effect of the Semi-circular Relieving Groove on the Stress Concentration at the Fillet of the Stepped Bar under Axial Tension)

  • 김효철
    • 대한조선학회지
    • /
    • 제6권2호
    • /
    • pp.5-10
    • /
    • 1969
  • A stepped bar with seimi-circular stress relieving groove near the fillet was subjected by axial tension in a polarized light field. On the stress concentration factor, the effect of the ratios of the fillet radius, the distance between two relieving grooves and the groove radius to the breath of the narrower portion of the stepped bar have been investigate. Observing the stress concentration in 48 models with various proportions, the conclusion arrived at were as follow: 1) If the fillet radius of the stepped bar is larger than half breadth of the narrower portion, the reduction of the stress concentrations can not be expected. 2) If the fillet radius is smaller than half breadth of the narrower portion of the stepped bar, the stress concentration can be droped to the reasonable range. 3) When the groove radius is larger than a quarter of the difference between the distance of two relieving grooves and the breadth of the stepped bar and smaller than a half of that, the stress concentration factors can have their possible minimum value. 4) When the sun of the breadth of the narrower portion of the stepped bar and twice of the relieving groove radius is smaller than the distance between two relieving grooves, minimum stress concentration can be obtained.

  • PDF

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

액압성형 시험을 통한 알루미늄 튜브 재료의 성형한계도 (Forming Limit Diagram of an Aluminum Tube Through Hydroforming Tests)

  • 김정선;이진규;박종연;이동재;김헌영;김형종
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.514-519
    • /
    • 2005
  • A tube hydroformability testing system was designed and fabricated enabling to apply the forming condition along arbitrarily pre-programmed internal pressure-axial feed path. The free-bulging and T-forming tests were carried out on the extruded aluminum (A6063) tube specimens with 40.6 mm outer diameter and 2.25 mm thickness. Nine different combinations of internal pressure and axial feed, yielding different strain paths from one another, were taken into consideration in order to induce bursting at various deformation modes. Major and minor strains were automatically measured from deformed grids around the fracture using a stereo-vision-based surface strain measurement system, named ASIAS. The forming limit diagram of the A6063 tube material was successfully obtained. Most of the data points acquired from free bulging and T-forming tests appeared in the range of negative minor strain on the FLD and are mostly located near the strain paths calculated from explicit finite element simulations. The forming limit obtained from tests after pre-tension was considerably lower than that from tests without pre-tension, which showed the strain path-dependency of the forming limit as well known in the sheet forming fold.

고장력 볼트 이음부의 내부 압축응력 분포 (Compressive Stress Distribution of High Tension Bolted Joints)

  • 김성훈;이승용;최준혁;장동일
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.171-179
    • /
    • 1997
  • 고장력 볼트 이음부에서의 힘의 전달은 부재간의 압축력 및 볼트축력에 의하여 외력과 균형을 이룸으로서 형성되어지며, 부재간의 압축력, 도입된 축력의 변화 및 미끄러짐하중 등은 볼트 체결부 및 볼트의 유효강성에 지배된다. 이때 유효강성은 일반적으로 접합부의 유효단면적과 탄성계수의 곱으로 나타내어지지만 접합부재의 유효단면적이 어느 정도가 되는지는 판단하기가 쉽지가 않다. 이를 위해서 종래에는 이음부의 탄성변형에 관계하는 유효단면적을 등가중공원통형으로 가정하여 이에 대한 여러 가지 검토가 이루어졌다. 그러나 이러한 제안식들은 설계상의 목적과 복잡한 계산을 피하기 위하여 매우 단순화시킨 것으로 어느 식이 타당한 지는 단정하기가 어려우며 이에 대한 상세한 해석적인 검토 및 실험적인 검증이 요구된다. 따라서, 본 연구에서는 볼트 축력에 의한 접합부재의 유효단면적 산정과 이에 대한 검증을 위하여 고장력 볼트 이음 시험편에 대해 피로시험을 실시하고 반복하중 재하 후의 마찰면의 형상을 관찰하여 유효마찰 영역을 측정하였으며, 유한 요소법에 의해 수치 해석을 실시하여 내부 압축응력의 분포형상을 밝히고 접촉면상에 발생하는 응력 분포영역을 근사화하므로서 마찰면의 형상과 내부 압축응력의 분포영역과의 관계 그리고 유효단면적의 산정 방법을 고찰하였다.

  • PDF

고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구 (A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints)

  • 이승용;경갑수
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.513-521
    • /
    • 2006
  • 최근에는 고장력볼트 마찰이음의 다양화에 대해서 실무적 관점에서부터 각종 실험적 연구가 실시되고 있지만, 이러한 연구 결과가 시방기준의 개정에 반영된 것은 거의 없는 실정이다. 특히 강교량에 있어서는 최근 합리화의 추진이 강하게 대두되고 있으며, 이에 따라 강교의 설계 및 시공상 가장 중요한 부분의 하나인 고장력볼트 이음부의 합리화의 필요성이 커지고 있다. 따라서 본 연구는 고장력볼트 이음부의 설계 및 시공의 합리화를 위한 방향을 제시하고, 설계기준으로의 반영을 위한 기초자료를 제시하기 위하여 고장력볼트 이음부에 관한 국내외의 설계기준을 비교, 검토하여 설계에서 가장 중요한 인자인 미끄러짐 계수, 그리고 볼트 구멍의 크기에 대한 규정을 분석하였다. 한편 과대공 및 축력감소의 영향을 평가하기 위하여 고장력볼트 연결부에 대한 미끄러짐 시험을 실시하여 미끄러짐 거동을 평가하였다. 또한 최근에 수행된 고장력볼트 마찰이음에 관한 연구결과를 토대로 접촉면의 상태에 따른 미끄러짐 계수의 차이, 과대공의 영향, 채움판의 적용, 모재 틈새간격의 영향, 방청볼트의 사용성 등을 평가하였다. 이로부터 미끄러짐 계수의 경우 국내의 시방기준에서는 접촉면의 처리상태에 따라 일률적으로 적용되고 있는데 비하여 외국의 시방기준에서는 접촉면의 처리상태에 따라 세분화하여 규정하고 있다. 따라서 국내의 시방기준에도 접촉면의 처리상태에 따라 미끄러짐 계수를 세분하여 규정하여 설계의 합리화를 추진할 필요가 있을 것으로 판단된다. 또한 외국의 시방기준에서 적용하는 정도의 과대공을 설계에 반영하면 시공의 효율성을 증대시킬 수 있을 것으로 판단된다.

Effect of tension stiffening on the behaviour of square RC column under torsion

  • Mondal, T. Ghosh;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.501-520
    • /
    • 2015
  • Presence of torsional loadings can significantly affect the flow of internal forces and deformation capacity of reinforced concrete (RC) columns. It increases the possibility of brittle shear failure leading to catastrophic collapse of structural members. This necessitates accurate prediction of the torsional behaviour of RC members for their safe design. However, a review of previously published studies indicates that the torsional behaviour of RC members has not been studied in as much depth as the behaviour under flexure and shear in spite of its frequent occurrence in bridge columns. Very few analytical models are available to predict the response of RC members under torsional loads. Softened truss model (STM) developed in the University of Houston is one of them, which is widely used for this purpose. The present study shows that STM prediction is not sufficiently accurate particularly in the post cracking region when compared to test results. An improved analytical model for RC square columns subjected to torsion with and without axial compression is developed. Since concrete is weak in tension, its contribution to torsional capacity of RC members was neglected in the original STM. The present investigation revealed that, disregard to tensile strength of concrete is the main reason behind the discrepancies in the STM predictions. The existing STM is extended in this paper to include the effect of tension stiffening for better prediction of behaviour of square RC columns under torsion. Three different tension stiffening models comprising a linear, a quadratic and an exponential relationship have been considered in this study. The predictions of these models are validated through comparison with test data on local and global behaviour. It was observed that tension stiffening has significant influence on torsional behaviour of square RC members. The exponential and parabolic tension stiffening models were found to yield the most accurate predictions.

대공간 구조형식 분류체계에 관한 연구 (A Research on the Classified Structural System in Long-Span Structures)

  • 양재혁
    • 한국공간구조학회논문집
    • /
    • 제2권3호
    • /
    • pp.81-92
    • /
    • 2002
  • The objective of this paper is to help to make decision of the appropriate structural types in long span structured building due to range of span. For the intention, based on 7 forces of structural element, it is analized the relationships among 6 configurations of structural element(d/1), 25 structural types, 4 materials, and span-length known with 186 sample from 1850 to 1996. 1) bending forces: $club(1/100{\sim}1/10),\;plate(1/100{\sim}1/10),\;rahmen(steel,\;10{\sim}24m)\;simple\;beam(PC,\;10{\sim}35m)$ 2) shearing forces: $shell(1/100{\sim}1/1000)\;hyperbolic\;paraboloids(RC,25{\sim}97m)$ 3) shearing+bending forces: plate, folded $plate(RC21{\sim}59m)$ 4) compression axial forces: club, $arch(RC,\;32{\sim}65m)$ 5) compression+tension forces: shell, braced dome $shell(RC,\;40{\sim}201m),\;vault\;shell(RC,\;16{\sim}103m)$ 6) compression+tension axial forces: $rod(1/1000{\sim}1/100)$, cable(below 1/1000)+rod, coble+rod+membrane(below 1/1000), planar $truss(steel,\;31{\sim}134m),\;arch\;truss(31{\sim}135m),\;horizontal\;spaceframe(29{\sim}10\;8m),\;portal\;frame(39{\sim}55m),\;domical\;space\;truss(44{\sim}222m),\;framed\;\;membrane(45{\sim}110m),\;hybrid\;\;membrane\;(42{\sim}256m)$ 7) tension forces: cable, membrane, $suspension(60{\sim}150m),\;cable\;\;beam(40{\sim}130m),\;tensile\;membrane(42{\sim}136m),\;cable\;-slayed(25{\sim}90m),\;suspension\;membrane(24{\sim}97m),\;single\;layer\;pneumatic\;structure(45{\sim}231m),\;double\;layer\;pneumatic\;structures(30{\sim}44m)$

  • PDF