• Title/Summary/Keyword: Axial Restraint

Search Result 46, Processing Time 0.02 seconds

A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect

  • Wang, Weiyong;Zhang, Linbo;He, Pingzhao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1497-1507
    • /
    • 2018
  • Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span-depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.

Analysis of Track-Bridge Interaction and Retrofit Design for Installation of CWR on Non-ballasted Railway Bridge (무도상 철도교 레일 장대화를 위한 궤도-교량 상호작용 해석 및 개량방안 분석)

  • Yoon, Jae Chan;Lee, Chang Jin;Jang, Seung Yup;Choi, Sang Hyun;Park, Sung Hyun;Jung, Hyuk Sang
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • This study investigated the change of additional axial stress of rail and reaction force at bridge bearings due to the track-bridge interaction when laying CWR on non-ballasted railway bridges including truss bridges with relatively long span. According to the results of the present study, additional axial stresses of rail and reaction forces at bridge bearings showed a large increase when CWR is installed on the non-ballasted railway bridge. The additional axial stress of rail can be acceptable if sufficient lateral resistance can be obtained. However, if the reaction force increases, there is a risk of damage of the bearing or pier, and therefore, it is necessary to take measures to mitigate the reaction force. It is found that additional axial stress of rail decreases when considering the frictional resistance of the bridge movable support, but its effect on the bearing reaction force is very small. On the other hand, when the longitudinal track restraint decreases, both additional axial stress of rail and bearing reaction force are reduced to a large extent. Also, when the ZLR fastening devices are applied to the region where the additional axial stress of rail is highest, bearing reaction force as well as additional axial stress of rail greatly decreased. Therefore, the application of ZLR fastening devices with the reduction of the longitudinal track restraints is very effective for installing CWR on non-ballasted railway bridges.

Study on the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end constraints

  • Junli Lyu;Encong Zhu;Rukai Li;Bai Sun;Zili Wang
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.539-551
    • /
    • 2023
  • In order to study the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end restraints, temperature rise tests with constant load were conducted on full-scale castellated composite beams with ortho-hexagonal holes and hinge or rigid joint constraints to investigate the temperature distribution, displacement changes and failure patterns of castellated composite beams with two different beam-end constraints during the whole course of fire. The results show that (1) During the fire, the axial pressure and horizontal expansion deformation generated in the rigid joint constrained composite beam were larger than those in the hinge joint constrained castellated composite beam, and their maximum horizontal expansion displacements were 30.2 mm and 17.8 mm, respectively. (2) After the fire, the cracks on the slab surface of the castellated composite beam with rigid joint constraint were more complicated than hinge restraint, and the failure more serious; the lower flange and web at the ends of the castellated steal beams with hinge and rigid joint constraint produced serious local buckling, and the angles of the ortho-hexagonal holes at the support cracked; the welds at both ends of the castellated composite beam with rigid joint constraint cracked. (3) Based on the simplified calculation method of solid-web composite beam, considering the effect of holes on the web, this paper calculated the axial force and displacement of the beam-end constrained castellated composite beams under fire. The calculation results agreed well with the test results.

An Investigation into the Finite Element Modeling of Connections of Composited H-Beams and Concrete Filled S.H.S Columns Subjected to Compression (축력을 받는 충전콘크리트 각형강관과 콘크리트-H형강 합성보 접합부의 유한요소 모델링에 관한 연구)

  • 이종석;윤영조;김승현
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.230-238
    • /
    • 1996
  • Recently, square hollow section (S.H.S) is frequently used for column and H-section for beam of steel building structures. The connection between S.H.S column and H-beam is found to weaken the rotational restraint of the joint. Several types of detail to overcome the problem have been suggested for the connection between concrete filled S.H.S column and concrete composited H-bean In this paper, modelling technique to monitor the behavior of the connections is proposed. Then, Drucker-Prager yield criteria is introduced to simulate yield behavior of in-fill concrete while Von-Mises was used in earlier works. Gap-elements are also introduced to simulate the interaction between S.H.S columns and the in-fill concrete as in privious papers. axial forces are applied to S.H.S columns and made to vary in intensity and eccentricity.

  • PDF

Track Longitudinal Irregularities at Bridge Deck Expansion Joint with ZLR(Zero Longitudinal Restraint) (활동체결장치가 설치된 교량상판 신축이음부에서의 궤도고저틀림에 미치는 영향)

  • Eom, Jong-Woo;Kim, Si-Chul;Kim, In-Jae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1093-1098
    • /
    • 2007
  • In designing the high-speed railroad track, it is important to utilize appropriate track components to maintain uniform stiffness and ensure track alignment within the tolerance set for that system. In this regard, continuous welded rails (CWRs) were introduced to the Korean railways. Yet the installation of CWRs can result in an adverse impact due to the track/structure interaction on bridge sections yielding variations in the stiffness at the expansion joints. It may also impose additional axial force, generate excessive stress or deflection on track, and loosen the ballast at the ends as a bridge deck contracts or expands owing to a thermally-induced dynamic response. The risk is even greater in a long bridge deck, resulting in track longitudinal irregularities, deteriorating passenger's comfort, and increasing maintenance efforts. This study evaluates the performance of ZLR and their impact on track longitudinal irregularities through the track measuring results on a test section installed the ZLR in order to minimize the thermally-induced responses and the maintenance efforts for the high speed railway bridges.

  • PDF

Effect of height-to-width ratio on composite wall under compression

  • Qin, Ying;Yan, Xin;Zhou, Guan-Gen;Shu, Gan-Ping
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.507-519
    • /
    • 2020
  • Double skin composite walls are increasingly popular and have been applied to many safety-related facilities. They come from the concept of composite slabs. Conventional connectors such as shear studs and binding bars were used in previous studies to act as the internal mechanical connectors to lock the external steel faceplates to the concrete core. However, the restraint effects of these connectors were sometimes not strong enough. In this research, a recently proposed unique type of steel truss was employed along the wall height to enhance the composite action between the two materials. Concrete-filled tube columns were used as the boundary elements. Due to the existence of boundary columns, the restraints of steel faceplates to the concrete differ significantly for the walls with different widths. Therefore, there is a need to explore the effect of height-to-width ratio on the structural behavior of the wall. In the test program, three specimens were designed with the height of 3000 mm, the thickness of 150 mm, and different widths, to simulate the real walls in practice. Axial compression was applied by two actuators on the tested walls. The axial behavior of the walls was evaluated based on the analysis of test results. The influences of height-to-width ratio on structural performance were evaluated. Finally, discussion was made on code-based design.

Analysis of Axial Restrained Behavior of Early-Age Concrete Using Sea-Sand (해사를 사용한 초기재령 콘크리트의 일축 구속 거동 해석)

  • 박상순;송하원;조호진;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2002
  • In this paper, finite element analysis is applied for simulation of cracks due to restraining autogenous and drying shrinkage at early-age concrete. A micro-level heat hydration model and a shrinkage prediction model along with a moisture diffusion model are adopted for the finite element analysis. Then, an axial restraint test is carried out for concrete specimens containing different amounts of chloride ions to evaluate stress development and cracking due to the restraining shrinkages at early ages. Test results show that the increase of contents of chloride ions increases restrained stress, but does not increase strength. By this increase of shrinkage strain at early-age, time to occur the crack is accelerated. Finally, stress development and cracking of concrete specimens containing different amount of chloride ions we simulated using the finite element analysis. Results of the analysis using the Proposed model are verified by comparison with test results.

Remediation of buried pipeline system subject to ground rupture using low-density backfill (경량채움재를 활용한 지반영구변위에 대한 지중관 시스템의 개량기법)

  • Choo, Yun-Wook;Abdoun, T.H.;O'Rourke, M.J.;Ha, D.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.553-562
    • /
    • 2008
  • A remediation technique for buried pipeline system subject to permanent ground deformation is proposed. Specifically, EPS (expanded polystyrene) geofoam blocks are used as low density backfill, thereby reducing soil restraint and pipeline strains. In order to evaluate this remediation technique, a series of 12 centrifuge model tests with HDPE pipe were performed. The amount or spatial extent of the low density backfill was varied, as well as the orientation of the pipe with respect to the fault offset. Specifically, in the $-63.5^{\circ}$ test, the orientation was such that the pipe was placed in flexure and axial tension. The $-85^{\circ}$ orientation placed the pipe mainly in flexure. In all cases, the behavior of the remediated pipe was compared to that for the unremediated pipe. The geofoam backfill was successful in improving pipe behavior for two of the three pipe/fault orientations. However, for the $60^{\circ}$ orientation, the pipe buckled in compression irrespective of the geofoam backfill.

  • PDF

Analysis of behaviour of steel beams with web openings at elevated temperatures

  • Yin, Y.Z.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.15-31
    • /
    • 2006
  • Beams with web openings are an attractive system for multi-storey buildings where it is always desirable to have long spans. The openings in the web of steel beams enable building services to be integrated within the constructional depth of a floor, thus reducing the total floor depth. At the same time, the increased beam depth can give high bending moment capacity, thus allowing long spans. However, almost all of the research studies on web openings have been concentrated on beam behaviour at ambient temperature. In this paper, a preliminary numerical analysis using ABAQUS is conducted to develop a general understanding of the effect of the presence of web opening on the behaviour of steel beams at elevated temperatures. It is concluded that the presence of web openings will have substantial influence on the failure temperatures of axially unrestrained beams and the opening size at the critical position in the beam is the most important factor. For axially restrained beams, the effect of web openings on the beam's large deflection behaviour and catenary force is smaller and it is the maximum opening size that will affect the beam's response at very high temperatures. However, it is possible that catenary action develops in beams with web openings at temperatures much lower than the failure temperatures of the same beam without axial restraint that are often used as the basis of current design.

Eigenvalue Design Sensitivity Analysis To Redesign Spacer Grid Location In Nuclear Fuel Assembly (핵연료집합체 지지격자 위치결정을 위한 고유치 민감도해석)

  • 박남규;이성기;김형구;최기성;이준노;김재원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-709
    • /
    • 2002
  • The spacer grids in nuclear fuel assembly locate and align the fuel rods with respect to each other. They provide axial and lateral restraint against an excessive rod motion mainly caused by coolant flow. It is understood that each rod Is supported by multiple spacer grid. In such a case, it is important to determine spacer grid span so as to avoid resonance between the natural frequency of the fuel rods and excitation frequency. Actually dynamic characteristics of the fuel rods can be improved by assigning adequate spacer grid locations. When a dynamic performance of the structure is to be improved, design sensitivity analysis plays an important role as like many structural redesign problems. In this work, a shape design concept, different from conventional design, was applied to the problem. According to the theory shape can be a design parameter and optimal shape design can be found. This study concentrates on eigenvalue design sensitivity of the fuel rod supported by multiple spacer grids to determine optimal spacer grids positions.

  • PDF