• 제목/요약/키워드: Axial Flow Rotor

검색결과 189건 처리시간 0.025초

축류터빈 동익 내부의 누설유동에 관한 수치해석 (Numerical Analysis of Tip Leakage Flows in Axial Flow Turbine Rotors)

  • 정희택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.171-175
    • /
    • 2003
  • Numerical analysis of three-dimensional viscous flow-fields in the turbine rotor passages is carried out to investigate flow physics including the interaction between secondary vortices, tip leakage vortex, and the rotor wake. The blade tip geometry is accurately modeled adopting the embedded H grid topology. An explicit four-stage Runge-Kutta scheme is used for the time integration of both the mean flow and turbulence equations. The computational results for the entire turbine rotor flows, particularly the tip clearance flow and the secondary flows, are interpreted and compared with the experimental data from the Penn State turbine stage. Good agreement between the experimental data and the numerical prediction was achieved in the sense of the major features of the flow fields.

  • PDF

부분분사 소형 축류형터빈에서 현절비와 노즐유동각이 성능에 미치는 연구 (Effect of Flow Angles at Nozzle and Solidities on a Partial Admitted Small Axial-Type Turbine)

  • 조종현;안국영;조수용
    • 한국추진공학회지
    • /
    • 제12권6호
    • /
    • pp.21-29
    • /
    • 2008
  • 본 연구에서는 부분분사에서 작동하는 소형 축류형 터빈에서, 중요한 설계변수인 노즐에서의 출구유동각과 동익에서의 현절비를 변경하였을 때 발생되는 성능변화에 대하여 실험적인 연구를 수행하였다. 성능시험에 사용된 터빈은 단단으로 구성되며 로터의 평균반경은 35mm였다. 실험에서 최적의 설계변수를 찾기 위하여 세 가지의 현절비와 네 가지의 노즐에서의 출구유동각을 적용하였다. 터빈에서의 전체적인 성능평가를 위하여 총비출력으로 비교하였으며, 부분분사율이 3.4%인 경우에 동익에서의 현절비가 2.18일 때 최고의 성능이 얻어졌다. 이 값은 전분사 시에 적용되는 최적의 현절비에 비하여 74%나 증가한 결과이다.

Low Speed Design of Rear Rotor in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Momosaki, Simpei;Imanishi, Toshiki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권2호
    • /
    • pp.105-112
    • /
    • 2013
  • The application of contra-rotating rotors for higher specific speed pump has been proposed in our studies, which is in principle effective for reducing the rotational speed and/or the pump size under the same specification of conventional axial flow pump. In the previous experiments of our prototype, the cavitation inception at the tip region of the rear rotor rather than that of the front rotor and the strong potential interaction from the suction surface of the rear rotor blade to the pressure surface of the front one were observed, indicating the possibility to further improve the pump performance by optimizing rotational speed combination between the two rotors. The present research aims at the design of rear rotor with lower rotational speed. Considering the fact that the incoming flow velocity defects at the tip region of the rear rotor, an integrated inflow model of 'forced vortex' and 'free vortex' is employed. The variation of maximum camber location from hub to tip as well as other related considerations are also taken into account for further performance improvement. The ideas cited above are separately or comprehensively applied in the design of three types of rear rotor, which are subsequently simulated in ANSYS CFX to evaluate the related pump performance and therefore the whole low speed design idea. Finally, the experimental validation is carried out on one type to offer further proofs for the availability of the whole design method.

엇회전식 축류팬의 비정상 유동특성에 관한 실험적 연구 (Experimental Study on the Unsteady Flow Characteristics of the Counter-Rotating Axial Flow Fan)

  • 조이상;최현민;강정식;조진수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.305-310
    • /
    • 2007
  • 엇회전식 축류팬의 복잡한 유동특성을 이해하고 설계, 공력 해석 및 소음 특성 예측에 활용될 수 있는 3차원 비정상 유동장을 측정하였다. 엇회전식 축류팬의 3차원 비정상 유동장은 작동 영역인 설계점에서 $45^{\circ}$ 경사 열선을 이용하여 전단 동익의 전방, 전단 동익과 후단 동익 사이 그리고 후단 동익의 후방의 수직 유로 단면에서 측정되었다. 엇회전식 축류팬의 전단 동익과 후단 동익에 의해 발생되는 후류, 팁 와류 및 팁 누설 유동의 비정상 특성을 속도 벡터와 속도 윤곽을 통해 나타내었다.

  • PDF

다단 천음속 축류형 압축기 성능에 관한 실험적 연구 (Experimental Research on Multi Stage Transonic Axial Compressor Performance Evaluation)

  • 강영석;박태춘;황오식;양수석
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.96-101
    • /
    • 2011
  • Korea Aerospace Research Institute is performing 3 stage transonic axial compressor development program. This paper introduces design step of the compressor, the performance test results and its analysis. In the fore part of the paper, aerodynamic process of the 3 stage axial compressor is presented. To satisfy both of the mass flow and pressure rise, the compressor should rotate at a high rotational speed. Therefore the transonic flow field forms in the rotor stages and it is designed with a relatively high pressure rise per stage to satisfy its design target. The compressor stage consists of 3 stages, and the bulk pressure ratio is 2.5. The first stage is burdened with the highest pressure ratio and less pressure rises occur in the following stages. Also it is designed that tip Mach number of the first rotor row does not exceed 1.3, while the maximum relative Mach number in the rotor stage is between 1.3~1.4 to increase the compressor flow coefficient. The final design has been confirmed by iterating three dimensional CFD calculations to verify design target and some design intentions. In the latter part of the paper, its performance test processes and results are presented. The performance test result shows that the overall compressor performance targets; pressure ratio and efficiency are well achieved. The stator static pressure distributions show that the blade loading is gradually increasing from the downstream of the compressor.

1단 축류압축기 내부 유동의 2차원 비점성 해석 (2-D Inviscid Analysis of Flow in One Stage of Axial Compressor)

  • 김현일;박준영;백제현;정희택
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.38-46
    • /
    • 2000
  • It has been indicated that the rotor/stator interaction has distinct causes of unsteadiness, such as the viscous vortex shedding, wake/stator interaction and potential rotor/stator interaction. In this paper, the mechanism of unsteady potential interaction in one stage axial compressor is numerically investigated for blade row ratio 1:1 and 2:3 at design point and for blade row ratio 2:3 at off-design point in two-dimensional view point. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting(FVS) and Cubic spline interpolation is applied on zonal interface. In this study the flow unsteadiness due to potential interaction are found to be larger in blade row ratio 2:3 than in 1:1. The total pressure rise in blade row ratio 2:3 is closer to the real value in design point than that in 1:1. The change of unsteady pressure amplitude according to the variation of stator exit pressure is very small.

  • PDF

Design, Fabrication, and Testing of a MEMS Microturbine

  • Jeon Byung Sun;Park Kun Joong;Song Seung Jin;Joo Young Chang;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.682-691
    • /
    • 2005
  • This paper describes the design, fabrication, and testing of a microturbine developed at Seoul National University. Here, the term 'microturbine' refers to a radial turbine with a diameter on the order of a centimeter. Such devices can be used to transmit power for various systems. The turbine is designed using a commercial CFD code, and it has a design flow coefficient of 0.238 and work coefficient of 0.542. It has 31 stator blades and 24 rotor blades. A hydrodynamic journal bearing and hydrostatic thrust bearings counteract radial and axial forces on the rotor. The test turbine consists of a stack of five wafers and is fabricated by MEMS technology, using photolithography, DRIE, and bonding processes. The first, second, fourth, and fifth layers contain plumbing, and hydrostatic axial thrust bearings for the turbine. The third wafer contains the turbine's stator, rotor, and hydrodynamic journal bearings. Furthermore, a turbine test facility containing a flow control system and instrumentation has been designed and constructed. In performance tests, a maximum rotation speed of 11,400 rpm and flow rate of 16,000 sccm have been achieved.

축류홴과 슈라우드의 유량 및 내부 유동 특성 (Flow characteristics of axial fan with shroud)

  • 이광희;김재원
    • 한국유체기계학회 논문집
    • /
    • 제11권5호
    • /
    • pp.30-36
    • /
    • 2008
  • Axial fan without static blades requires the duct as a guidance for unskewed inflows. This work examined the geometric effects of a duct guided the in and out flows through an impeller. The present methodologies are computational predictions with parallel work by experimental validation. Several different positions of a rotor in a duct are proposed for plausible models of a rotor inside a duct. The optimum axial position of an impeller in a duct is found at the #4 model where the impeller lies on the inlet edge of a circular duct. The model shows a wider inlet area. The result of computational prediction is in good agreement with experiment measurement.

냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석 (Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades)

  • 강수진;왕세명;심호경;이관수
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

Effect of Inlet Geometry on Fan Performance and Inlet Flow Fields in a Semi-opened Axial Fan

  • Liu, Pin;Shiomi, Norimasa;Kinoue, Yoichi;Setoguchi, Toshiaki;Jin, Ying-Zi
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권2호
    • /
    • pp.60-67
    • /
    • 2014
  • In order to clarify the effect of inlet bellmouth size of semi-opened type axial fan on its performance and flow fields around rotor, fan test and flow field measurements using hotwire anemometer were carried out for 6 kinds of bellmouth size. As results of fan test, the shaft power curve hardly changed, even if the bellmouth size changed. On the other hand, the pressure-rise near best efficiency point became small with the bellmouth size decreasing. Therefore, the value of maximum efficiency became small as the bellmouth size decreased. As results of flow field measurements at fan inlet, the main flow region with large meridional velocity existed near blade tip when the bellmouth size was large. As bellmouth size became smaller, the meridional velocity at fan inlet became smaller and the one at outside of blade tip became larger. As results of flow field measurements at fan outlet, the main flow region existed near rotor hub side.