• Title/Summary/Keyword: Axial Flow Rotor

Search Result 189, Processing Time 0.023 seconds

A Study on the Flow Characteristics of an Axial Flow Fan by Unsteady Pressure Measurement (비정상 압력측정을 통한 축류휀 유동특성에 관한 연구)

  • Kang, Chang-Sik;Shin, You-Hwan;Kim, Kwang-Ho;Lee, Du-Yeol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.15-24
    • /
    • 2002
  • This paper presents an experimental study on the unsteady flow phenomena such as leakage flow and rotating stall which have influences on the performance and stability of an axial flow fan. For this study, unsteady pressure were measured using high frequency pressure transducers mounted on the easing wall of rotor passage and analyzed by Double Phase-Locked Averaging Technique. As the flow rate was reduced to near stall point, the pressure difference between the pressure and the suction side of the blade was increased especially new the leading edge and the lowest pressure zone of suction side was gradually developed. From the result of unsteady pressure field on the casing wall, one period of rotating stall was divided into three zones and the flow characteristics on each zone were described in detail.

A Numerical Analysis on the Nozzle-Rotor of a 3-D Supersonic Turbine (3차원 초음속 터빈의 노즐-로터 상호작용에 관한 수치적 연구)

  • Yun Won-Kun;Shin Bong-Gun;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.413-422
    • /
    • 2005
  • In this paper, numerical results for 3-D supersonic turbine flow have been firstly compared with the experimental results to verify results computed by $Fine^{TM}/Turbo$. It was found that $Fine^{TM}/Turbo$ can accurately predict flow characteristics within supersonic turbine. Next, an grid system for 3D turbine flow was optimized selected through grid independency test. Finally the effect of axial gap between rotor and nozzle and chamfer angle of blade edge on the flow characteristics within 3-D supersonic turbine was analyzed with Frozen Rotor method.

  • PDF

Numerical Calculation of Three-Dimensional F1ow through A Transonic Compressor Rotor (천음속 압축기 동익을 지나는 삼차원 유동의 수치해석)

  • Lee, Yong-Gap;Kim, Gwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1384-1391
    • /
    • 2001
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67) and to evaluate the performances of Abid's low-Reynolds-number k-$\omega$ and Baldwin-Lomax turbulence models. A finite volume method is used fur spatial discretization. The equations are solved implicitly in time by the use of approximate factorization. The upwind difference scheme is used for inviscid terms and viscous terms are approximated with central difference. The flux-difference-splitting method of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. The results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, it is concluded that Abid'k-$\omega$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost the same.

CFD Analysis for Optimization of Guide Vane of Axial-Flow Pump (축류펌프 안내 깃 최적화 설계를 위한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.519-525
    • /
    • 2016
  • In a pump, from the performance point of view, it is very important to minimize the shock loss at the inlet of the rotor blades. In this study, the effects of shape and install angle of the inlet guide on the performance of an axial-flow pump are numerically simulated using commercial CFD code, Ansys CFX. Finally, to obtain the optimized shape of the vanes and the install angle of the vanes in the inlet guide under given operating conditions, optimization analysis is conducted using Analysis design exploration based on response surface optimization.

A Suggested Mechanism of Significant Stall Suppression Effects by Air Separator Devices in Axial Flow Fans

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Radial-vaned air separators show a strong stall suppression effect in an axial flow fans. From a survey of existing literature on the effects and the author's data, a possible mechanism for the significant effects has been proposed here. The stall suppression is suggested to have been achieved by a combination of the following several effects; (1) suction of blade and casing boundary layers and elimination of embryos of stall, (2) separation and straightening of reversed swirling flow from the main flow, (3) induction of the fan main flow toward the casing wall and enhancement of the outward inclination of meridional streamlines across the rotor blade row, thus keeping the Euler head increase in the decrease in fan flow rate, and (4) reinforcement of axi-symmetric structure of the main flow. These phenomena have been induced and enhanced by a stable vortex-ring encasing the blade tips and the air separator. These integrated effects appear to have caused the great stall suppression effect that would have been impossible by other types of stall prevention devices. Thus the author would like to name the device "tip-vortex-ring assisted stall suppression device".

Study About a New Propulsion System Using CRP(II) (Noise and Flow of the Counter-Rotating Propeller) (CRP를 사용한 추진기관에 관한 연구(II) (CRP의 소음과 유동에 관하여))

  • 정진덕;이동호
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 1995
  • Three-dimensional flow measurements were conducted between the rotors of the CRP To understand mean flow phenomena of the CRP's, the results of the three-dimensional measurements were shown. Interaction noise of the CRP, which increases the overall ,level of sound pressure In the new propulsion system, is documented by using the double conditional sampling technique. The rear rotor will increase the axial flow between the rotors of a CRP depending upon the relative locations between the forward and the rear rotor blades. The decay and spreading of the forward wakes and the upstream propagation of the rear blade disturbances are shown along with the interaction of the flow disturbances by the two rotors of blades.

  • PDF

Design and Characteristic Analysis of Double Stator Axial Field 12/10 SRM (이중고정자 횡축 12/10 SRM의 설계 및 특성 해석)

  • Son, Dong-Ho;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.730-737
    • /
    • 2018
  • This paper aims to design of a double stator axial field 12/10 SRM. Conventional and single stator axial field SRMs were reviewed to apply for automotive cooling fan. The axial field SRM has the advantage of shorter flux path, higher torque per volume and lower iron loss. However, there is axial eccentricity in single stator axial field SRM due to one side excitation. Therefore, a double stator type is designed in this paper to reduce the axial eccentricity. And the trapezoidal pole shape of the stator increases the flow of magnetic flux from stator to rotor and the torque region. The torque and efficiency are compared and tested with experiments.

Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor (다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성)

  • Shin, You-Hwan;Elder, Robin L;Kim, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

Experimental Research of Multi-Stage Axial Compressor Stability Enhancement by Air Injection (다단 축류압축기의 안정성 개선을 위한 실험적 연구)

  • Lim, Young-Cheon;Lim, Hyung-Soo;Song, Seung-Jin;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.378-381
    • /
    • 2009
  • A rotating stall, an instable phenomenon of compressor, brings about reducing the pressure rise, the efficiency of compressor and a mechanical demage. In order to improve instability and extend operating range, it was performed that a stability enhancement experiment applying air injection method at the 4-stage low-speed axial compressor. The coanda nozzle was used to inject air in axial direction at rotor tip and 8 injectors were set up at regular interval at the upstream of 1st stage rotor. At 80% speed, injectors were worked before rotating stall happened. As injecting the 5.4% air of mode inception flow rate, the stability of compressor operation enhanced about 4%.

  • PDF