• Title/Summary/Keyword: Axial Deformation

Search Result 763, Processing Time 0.033 seconds

An Analytical Study on the Deformation Behavior of the Reinforced Concrete Circular Section Column under Bi-Axial Bending Moment and Axial Force (2축휨가 축력을 받는 철근콘크리트 원형단면주의 변형성상에 관한 해석적연구)

  • 정호길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.163-172
    • /
    • 1997
  • This paper is a study on the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force. That is, this is to clarify the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force by analytic methods. The deformation behavior of circular section column under bi-axial uni-axial bending moment and axial force are compare with those of a square section column under the same conditions. Those of circular section column under bi-axial bending moment are decreased as compared with those of circular section column under uni-axial bending moment. The results mentioned above are the same under the axial force of 7tons and 11tons.

  • PDF

Plastic deformation characteristics of disintegrated carbonaceous mudstone under dynamic loading

  • Qiu, Xiang;Yin, Yixiang;Jiang, Huangbin;Fu, Sini;Li, Jinhong
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.87-97
    • /
    • 2022
  • The excessive settlement and deformation of disintegrated carbonaceous mudstone (DCM) embankments under dynamic loading have long been problems for engineers and technicians. In this work, the characteristics and mechanism of the plastic deformation of DCM under different degrees of compaction, water contents and confining pressures were studied by static triaxial, dynamic triaxial and scanning electron microscopy testing. The research results show that the axial stress increases with increasing confining pressure and degree of compaction and decreases with increasing water content when DCM failure. The axial strain at failure of the DCM decreases with increasing confining pressure and degree of compaction and increases with increasing water content. Under cyclic dynamic stress, the change in the axial stress level of the DCM can be divided into four stages: the stable stage, transition stage, safety reserve stage and unstable stage, respectively. The effects of compaction, water content and confining pressure on the critical axial stress level which means shakedown of the DCM are similar. However, an increase in confining pressure reduces the effects of compaction and water content on the critical axial stress level. The main deformation of DCM is fatigue cracking. Based on the allowable critical axial stress, a method for embankment deformation control was proposed. This method can determine the degree of compaction and fill range of the embankment fill material according to the equilibrium moisture content of the DCM embankment.

Shear Deformation based on the Biaxial Tension-Compression Theory in Prestressed Concrete Members applied by Axial Loading (이축인장압축장이론에 기반한 PSC보의 전단변형)

  • Jeong, Jae-Pyong;Kim, Dae-Joong;Mo, Gui-Suk;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • ASCE-ACI Committee 426 and 445, on Shear and Torsion, well noted in their report that recent research work regarding shear and torsion had been devoted primarily to members. But it was not logical approach of PSC members applied by axial force based on the shear deformation in web element. And it was not included that the effect of axial is to shift the shear strain(or crack width) in the web element versus the applied shear curve up or down by the amount by which the biaxial tension-compression state varies. The shear strength also increases or decreases, so that the change in shear strain at service load due to the presence of axial load is to some extent changed. Generally, in corresponding beams the shear strain at service load is less in the beam subject to axial compression and greater in the beam subject to axial tension, than in the beam without axial load. In particular, however, no research were available on the shear deformation in shear of PSC members with web reinforcement, subject to axial force in addition to shear and bending. Therefore, this study was basically performed to develop the program for the calculation of the shear deformation based on the shear effect of axial force in prestressed concrete members.

  • PDF

Experimental axial force identification based on modified Timoshenko beam theory

  • Li, Dong-sheng;Yuan, Yong-qiang;Li, Kun-peng;Li, Hong-nan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.153-173
    • /
    • 2017
  • An improved method is presented to estimate the axial force of a bar member with vibrational measurements based on modified Timoshenko beam theory. Bending stiffness effects, rotational inertia, shear deformation, rotational inertia caused by shear deformation are all taken into account. Axial forces are estimated with certain natural frequency and corresponding mode shape, which are acquired from dynamic tests with five accelerometers. In the paper, modified Timoshenko beam theory is first presented with the inclusion of axial force and rotational inertia effects. Consistent mass and stiffness matrices for the modified Timoshenko beam theory are derived and then used in finite element simulations to investigate force identification accuracy under different boundary conditions and the influence of critical axial force ratio. The deformation coefficient which accounts for rotational inertia effects of the shearing deformation is discussed, and the relationship between the changing wave speed and the frequency is comprehensively examined to improve accuracy of the deformation coefficient. Finally, dynamic tests are conducted in our laboratory to identify progressive axial forces of a steel plate and a truss structure respectively. And the axial forces identified by the proposed method are in good agreement with the forces measured by FBG sensors and strain gauges. A significant advantage of this axial force identification method is that no assumption on boundary conditions is needed and excellent force identification accuracy can be achieved.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.

Use of vibration characteristics to predict the axial deformation of columns

  • Moragaspitiya, H.N. Praveen;Thambiratnam, David P.;Perera, Nimal J.;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.73-88
    • /
    • 2014
  • Vibration characteristics of columns are influenced by their axial loads. Numerous methods have been developed to quantify axial load and deformation in individual columns based on their natural frequencies. However, these methods cannot be applied to columns in a structural framing system as the natural frequency is a global parameter of the entire framing system. This paper presents an innovative method to quantify axial deformations of columns in a structural framing system using its vibration characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration among the columns.

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

The Behavior of Local Buckling for Steel Circular Tubes Subject to Cyclic Axial Loads (반복 축하중을 받아 국부좌굴을 수반하는 원형강관 부재의 복원력 특성)

  • Lee Sang-Ju;Lee Dong-Woo;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper, we work with steel circular tubes and propose analysis model which can consider local buckling that it has an effect on failure of steel structures and induce the relation between loading and deformation. First of all, in respect to axial symmetry local buckling, which is simplest case, elasto-plastic behavior acting only axial loads is object Therefore, it suggests analysis model for axial symmetry local buckling. And that is explainable the process from increasing internal force to decreasing passing maximum internal force. Besides, we induce the relation between the axial force and axial deformation.

  • PDF

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.