• Title/Summary/Keyword: Avoiding action

Search Result 43, Processing Time 0.032 seconds

The Quantitative Analysis on the Criterion Elements for Collision Avoidance Action in Collision Avoidance maneuver and Its Application (피항조선시의 피항개시기준요소의 양적파악 및 그 이용에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 1999
  • The Steering and Sailing Rules of International Regulation for Preventing Collisions at Sea now in use direct actions to avoid collision when two power-driven vessels are meeting on reciprocal or nearly reciprocal courses so as to involve risk of collision. But these rules do not refer to the minimum relative distances and safety relative distances between two vessels when they should take such actions.In this paper the ship's collision avoiding actions being analyzed from a viewpoint of ship motions, the mathematical formulas to calculate such relative distances necessary for taking actions to avoid collision were worked out. The values of maneuvering indices being figured out through experiments of 20 actual ships of small, medium, large and mammoth size and applied to calculating formulas, the minimum relative distances and safety relative distances were calculated. The main results were as follows. 1. It was confirmed that the criterion elements for collision avoiding actions in head-on situation of two vessels shall be the minimum relative distances and safety relative distances between them. 2. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the minimum relative distance of small vessel(GT : 160~650tons) was found to be about 4.7 times her own length, and those of medium (GT:2,300~4,500tons),large(GT:15,000~62,000tons) and mommoth (GT:91,000~194,000tons) vessels were found to be about 5.2 times, about 5.2 times and about 6.1 times their own lengths respectively. 3. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the safe relative distance of small vessel (GT : 160~650tons) was found to be about 6.8 times her own length, and those of medium (GT : 2,300~4,500tons), large (GT: 15,000~62,000tons) and mammoth (GT : 91,000~194,000tons) vessels were found to be about 9.0 times, about 6.3 times, and about 8.0 times their own lengths respectively. 4. It is considered to be helpful for the safety of ship handling that the sufficient safe relative distances for every vessels shall be more than about 12~14 times which are 2 times minimum relative distance, their own length on above assumption.

  • PDF

The Relative Distance in Taking Action for Collision Avoidance Maneuver of the Stand-on Vessel (피항조선시의 유지선 피항개시거리에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.363-371
    • /
    • 1996
  • The Steering and Sailing Rules of International Regulations for Preventing Collisions at Sea now in use direct the best aid - action to avoid collision by the stand - on vessel. But these rules do not refer to the safety relative distance between two vessels when she should take such action. In this paper, the author analyzed the ship's collision avoiding actions from the viewpoint of ship motions and worked out mathematical formulas to calculate the relative distances necessary for taking action to avoid collision. Figuring out the values of maneuvering indices through experiments of 11 actual ships of small, medium, large and mammoth size, the author applied these values to the calculating formulas and calculated the minimum relative distances. The main results are as follows: 1. It was confIrmed that the stand - on vessel should keep the greatest relative distance for taking best aid - action to avoid collision when the cross angle of course was $90^{\circ}$ and near it(70-$90^{\circ}$ ). 2. When the cross angle of course was $90^{\circ}$ , the minimum relative distance of small vessel(GT: 160-650tons) was found to be more than about 6.8 times of her own length, and those of medium(GT : 2,300-3,500tons), large(GT : 22,OOO-62,OOOtons) and mammoth(GT : 91,000-139,000tons) vessels were found to be more than about 9.0 times, about 5.4 times and about 6.8 times of their own lengths. 3. It was confIrmed that collision danger was greater when crossing angle was obtuse than in an acute angle, therefore greater relative distance was to be kept by the stand - on vessel for taking best aid - action to avoid collision in the case of the obtuse angle. 4. In every vessels, in the case of $90^{\circ}$ cross angle of course the safety minimum relative distance was found to be more than about 9.0 times of their own lengths.

  • PDF

Architecture of Collision Avoidance System between Bicycle and Moving Object by Using V2V(X) Network (V2V(X) 네트워크를 이용한 자전거와 이동 객체간 충돌 회피 시스템 구조)

  • Gu, Bon-gen
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • Bicycle shares road with various traffic elements like car, pedestrian and, the number of bicycle user is increasing in recent. Therefore, bicycle accident continuously increases. Especially in complex traffic environment, bicycle accident which collides with moving object such as pedestrian occupies many parts of bicycle accident in the reason that the cyclist does not recognize moving object. In this paper, to reduce or avoid the bicycle accident, we propose the architecture of bicycle collision avoidance system in which that cyclist can get the information about moving object by connecting bicycle to network of vehicles and does some action for avoiding collision. In our architecture, when traffic element such as car recognizes moving object, it decides the moving direction of object, and transfers information about moving direction via vehicles network. Bicycle collision avoidance system from our proposed architecture receives this information, and alerts to cyclist when the moving object influences the safety of bicycle.

Development of a displacement-based design approach for modern mixed RC-URM wall structures

  • Paparoa, Alessandro;Beyer, Katrin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.789-830
    • /
    • 2015
  • The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or replacing URM walls with RC walls. Of late, also several new construction projects have been conceived directly as buildings with both RC and URM walls. Despite the widespread use of such construction technique, very little is known about the seismic behaviour of mixed RC-URM wall structures and codes do not provide adequate support to designers. The aim of the paper is therefore to propose a displacement-based design methodology for the design of mixed RC-URM edifices and the retrofit of URM buildings by replacing or adding selected URM walls with RC ones. The article describes also two tools developed for estimating important quantities relevant for the displacement-based design of structures with both RC and URM walls. The tools are (i) a mechanical model based on the shear-flexure interaction between URM and RC walls and (ii) an elastic model for estimating the contribution of the RC slabs to the overturning moment capacity of the system. In the last part of the article the proposed design method is verified through nonlinear dynamic analyses of several case studies. These results show that the proposed design approach has the ability of controlling the displacement profile of the designed structures, avoiding concentration of deformations in one single storey, a typical feature of URM wall structures.

Development of Collision Risk Evaluation Model Between Passing Vessel and Mokpo Harbour Bridge (통항 선박과 목포 대교의 충돌 위기 평가 모델 개발)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.405-415
    • /
    • 2010
  • To assess the possible collision risk between Mokpo Harbour Bridge, which is under construction, and passing vessels, we proposed Real-Time Bridge-Vessel Collision Model (RT-BVCM) in this paper. The mathematical model of RT-BVCM consists of the causation probability by the vessel aberrancy due to navigation environments, the geometric probability by the structural feature of a bridge relative to a ship size and, the failure probability by the ship collision track and the stopping distance which is not to come to a stop before hitting the obstacles. Then, the probabilistic mathematical model represented as risk index with the risk level from 1 to 5. The merit of the proposed model to the collision model proposed by AASHTO (American Association of State Highway and Transportation Officials) is that it can provide enough time to take adequate collision avoiding action. Through the simulation tests to the two kinds of test ships, 3,000 GT and 10,000 GT, it is cleary found that the proposed model can be used as a collision evaluation model to the passing vessel and Mokpo Harbour Bridge.

Experiences of Ego Integrity Recovery in Elderly Cancer Patients: Grounded Theory Approach (노인 암환자의 자아통합감 회복 경험: 근거이론 접근)

  • Choi, Han-Gyo;Yeom, Hye-Ah
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.3
    • /
    • pp.349-360
    • /
    • 2019
  • Purpose: This study was conducted to derive a substantive theory on lived experiences of elderly cancer patients. Methods: The data were collected from February to March 2018 through in-depth personal interviews with 14 elderly cancer patients. The collected data were analyzed based on Corbin and Strauss's grounded theory. Results: The core category was "the journey to find balance in daily lives as a cancer patient by recovering disturbed ego integrity." The core phenomenon was "shattered by suffering from cancer," and the causal conditions were "physical change" and "limitations in daily life." The contextual conditions were "decreased self-esteem," "feelings of guilt toward the family," and the sense of "economic burden." The participants' action and interaction strategies were "maintaining or avoiding social relations," "seeking meaning of the illness," "falling into despair," and "strengthening the willingness to battle the cancer." The intervening conditions were "support from health care providers and family," "dissatisfaction with health care providers," "spiritual help from religion," and "the improvement or worsening of health conditions." The consequences were "having a new insight for life," "living positively along with cancer illness," and "the loss of willingness to live." A summary of the series of processes includes the "crisis stage," "reorganizing stage," and the "ego integration stage." Conclusion: This study explored the holistic process of ego integrity impairment and the recovery experience of elderly cancer patients. This study is expected to be used as a basis for the development of nursing interventions that can support patients when coping with all stages of their cancer illness trajectory.

A comparative review of epinephrine and phenylephrine as vasoconstrictors in dental anesthesia: exploring the factors behind epinephrine's prevalence in the US

  • Navkiran Deol;Gerardo Alvarez;Omar Elrabi;Gavin Chen;Nalton Ferraro
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.6
    • /
    • pp.293-302
    • /
    • 2023
  • This review paper delves into the comparative study of epinephrine and phenylephrine as vasoconstrictors in dental anesthesia, exploring their histories, pharmacological properties, and clinical applications. The study involved a comprehensive literature search, focusing on articles that directly compared the two agents in terms of efficacy, safety, and prevalence in dental anesthesia. Epinephrine, with its broad receptor profile, has been a predominant choice, slightly outperforming in the context of prolonging dental anesthesia and providing superior hemostasis, which is crucial for various dental procedures. However, the stimulation of beta-adrenergic receptors caused by epinephrine poses risks, especially to patients with cardiovascular conditions. Phenylephrine, a selective alpha-1 adrenergic agonist, emerges as a safer alternative for such patients, avoiding the cardiovascular risks associated with epinephrine. Moreover, its vasoconstrictive effect may not be as deleterious as that of epinephrine, due to its selective action. This review reveals that despite the potential benefits of phenylephrine, epinephrine continues to dominate in clinical settings, due to its historical familiarity, availability, and cost-effectiveness. The lack of commercially available pre-made phenylephrine dental carpules in most countries, except Brazil, and a knowledge gap within dental academia regarding phenylephrine, contribute to its limited use. This review concludes that while both agents are effective, the choice between them should be based on individual patient conditions, availability, and the practitioner's knowledge and familiarity with the agents. The underuse of other vasoconstrictors like levonordefrin and the unavailability of phenylephrine in pre-mixed dental cartridges in many countries highlights the need for further exploration and research in this field. Furthermore, we also delve into the role of levonordefrin and examine the rationale behind the exclusion of phenylephrine from commercially available pre-mixed local anesthetic carpules, suggesting a need for a responsive approach from pharmaceutical manufacturers to the distinct needs of the dental community.

UAV Path Planning based on Deep Reinforcement Learning using Cell Decomposition Algorithm (셀 분해 알고리즘을 활용한 심층 강화학습 기반 무인 항공기 경로 계획)

  • Kyoung-Hun Kim;Byungsun Hwang;Joonho Seon;Soo-Hyun Kim;Jin-Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.15-20
    • /
    • 2024
  • Path planning for unmanned aerial vehicles (UAV) is crucial in avoiding collisions with obstacles in complex environments that include both static and dynamic obstacles. Path planning algorithms like RRT and A* are effectively handle static obstacle avoidance but have limitations with increasing computational complexity in high-dimensional environments. Reinforcement learning-based algorithms can accommodate complex environments, but like traditional path planning algorithms, they struggle with training complexity and convergence in higher-dimensional environment. In this paper, we proposed a reinforcement learning model utilizing a cell decomposition algorithm. The proposed model reduces the complexity of the environment by decomposing the learning environment in detail, and improves the obstacle avoidance performance by establishing the valid action of the agent. This solves the exploration problem of reinforcement learning and improves the convergence of learning. Simulation results show that the proposed model improves learning speed and efficient path planning compared to reinforcement learning models in general environments.

A Study on the Control System of Maximum Demand Power Using Neural Network and Fuzzy Logic (신경망과 퍼지논리를 이용한 최대수요전력 제어시스템에 관한연구)

  • 조성원
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.420-425
    • /
    • 1999
  • The maximum demand controller is an electrical equipment installed at the consumer side of power system for monitoring the electrical energy consumed during every integrating period and preventing the target maximum demand (MD) being exceeded by disconnecting sheddable loads. By avoiding the peak loads and spreading the energy requirement the controller contributes to maximizing the utility factor of the generator systems. It results in not only saving the energy but also reducing the budget for constructing the natural base facilities by keeping thc number of generating plants ~ninimumT. he conventional MD controllers often bring about the large number of control actions during the every inteyating period and/or undesirable loaddisconnecting operations during the beginning stage of the integrating period. These make the users aviod the MD controllers. In this paper. fuzzy control technique is used to get around the disadvantages of the conventional MD control system. The proposed MD controller consists of the predictor module and the fuzzy MD control module. The proposed forecasting method uses the SOFM neural network model, differently from time series analysis, and thus it has inherent advantages of neural network such as parallel processing, generalization and robustness. The MD fuzzy controller determines the sensitivity of control action based on the time closed to the end of the integrating period and the urgency of the load interrupting action along the predicted demand reaching the target. The experimental results show that the proposed method has more accurate forecastinglcontrol performance than the previous methods.

  • PDF

A Study on the Ship`s Collision Avoiding Action Analyzed from a Viewpoint of Ship Kinematics (선체운동학적으로 본 충돌회피동작에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.97-112
    • /
    • 1978
  • The rule 15, 16 and 17 of International Regulations for Preventing collisions at Sea direct actions to avoid collision when two power-driven vessels are crossing. But these rules do not present the safety minimum approaching distances outside which a give- way vessel deeps out of the way of a stand-on vessel. In this paper, the author analyzed the ship's collision avoiding actions from a viewpoint of ship kinematics as the method to calculate this distance. The author worked out mathematic formulas for calculating the safety minimum approaching distances outside which the give-way vessel takes the actions to avoid collisions in accordance with the cross angles of the crossing vessels' courses. Figuring out actually the values of maneuvering indices of the M. S. Koan Ack San (GT: 224tons), the training ship of the National Fisheries University of Busan and the M. S. Golden Clover (GT: 101, 235tons) of the Eastern Shipping Co., Ltd. through their Z test, the author applied these values to the calculating formulas and calculated the safety minimum approaching distances. The results of calculations are as follows; 1. The greatest distance is to be kept by the give-way vessel to avoid collision when the cross angle of courses is 90$^{\circ}$ or near it. In such case the safety minimum approaching distance of a small vessel must be more than 5 times of her own length and that of a large vessel more than 11 times of her own length. 2. Collision danger is greater when crossing angle is obtuse than in an acute angle, therefore greater distance is to be kept by the give-way vessel to avoid collision in the case of the obtuse angle. 3. The actions to be taken to avoid collisions by the give-way vessel in Rule 16 and by the stand-on vessel in Rule 17(a)(ii) of International Regulations for Preventing Collisions at Sea, must be done outside the above safety minimum approaching distance. When inevitably such actions are to be taken within the safety minimum approaching distance, they should be accompanied with engine motions.

  • PDF