• Title/Summary/Keyword: Avoidance Vector

Search Result 65, Processing Time 0.021 seconds

Proportional Navigation-Based Optimal Collision Avoidance for UAVs (비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동)

  • 한수철;방효충
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.

A Real-time Obstacle Avoidance of Mobile Robots using Limit-cycle and Vector Field Method (Limit-cycle과 벡터장법을 이용한 이동로봇의 실시간 장애물 회피)

  • Yun, Jae-Ho;Jie, Min-Seok;Lee, Kang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.243-246
    • /
    • 2003
  • In this paper, we propose a novel navigation method combined limit-cycle method and the vector field method for avoidance of unexpected obstacles in the dynamic environment. The limit-cycle method is used to obstacle avoidance in front of the robot and the vector field method is used to obstacle avoidance in the side of robot. The proposed method is tested on pioneer 2-DX mobile robot. The simulations and experiments demonstrate in the effectiveness of the proposed method for navigation of a mobile robot in the complicated and dynamic environments.

  • PDF

A Real-Time Obstacle Avoidance of Mobile Robot Using Nearness Diagram, Limit-Cycle and Vector Field Method (Nearness Diagram, Limit-Cycle 및 벡터장법을 이용한 이동로봇의 실시간 장애물 회피)

  • Kim, Pil-Gyeom;Jung, Yoon-Ho;Yoon, Jae-Ho;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • In this paper, we propose a novel navigation method combined Nearness Diagram, Limit-Cycle method and the Vector Field Method for avoidance of unexpected obstacles in the dynamic environment. The Limit-Cycle method is used to obstacle avoidance in front of the robot and the Vector Field Method is used to obstacle avoidance in the side of robot. And the Nearness Diagram Navigation is used to obstacle avoidance in the nearness area of the robot. The performance of the proposed method is demonstrate by simulations.

  • PDF

Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector (충돌 벡터를 이용한 이동로봇의 동적 장애물 회피)

  • Seo, Dae-Geun;Lyu, Eun-Tae;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

Fuzzy Hint Acquisition for the Collision Avoidance Solution of Redundant Manipulators Using Neural Network

  • Assal Samy F. M.;Watanabe Keigo;Izumi Kiyotaka
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.17-29
    • /
    • 2006
  • A novel inverse kinematics solution based on the back propagation neural network (NN) for redundant manipulators is developed for online obstacles avoidance. A laser transducer at the end-effctor is used for online planning the trajectory. Since the inverse kinematics in the present problem has infinite number of joint angle vectors, a fuzzy reasoning system is designed to generate an approximate value for that vector. This vector is fed into the NN as a hint input vector rather than as a training vector to guide the output of the NN. Simulations are implemented on both three- and four-link redundant planar manipulators to show the effectiveness of the proposed position control system.

A Study on the Method of Estimating the Baseline Risk Level of Multiple Obstacles situation Avoidance Based on COLREG for each Obstacles (다중 장애물 상황에서 COLREG를 바탕으로 장애물 회피의 기초 위험도 산정 방법에 관한 연구)

  • Kim, Dae-Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.195-196
    • /
    • 2019
  • Studied for multiple obstacle avoidance algorithm based on COLREG for autonomous navigation vessel's safety navigation. By used VECTOR value of external obstacle provided by RADAR, CPA and TCPA of each obstacle are analyzed, and the obstacle is classified based on the value, the risk level is calculated considering multiple obstacle avoidance situations, and the avoidance action is applied to secure minimum safety situation.

  • PDF

Enabling Vessel Collision-Avoidance Expert Systems to Negotiate

  • Hu, Qinyou;Shi, Chaojian;Chen, Haishan;Hu, Qiaoer
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.77-82
    • /
    • 2006
  • Automatic vessel collision-avoidance systems have been studied in the fields of artificial intelligence and navigation for decades. And to facilitate automatic collision-avoidance decision-making in two-vessel-encounter situation, several expert and fuzzy expert systems have been developed. However, none of them can negotiate with each other as seafarers usually do when they intend to make a more economic overall plan of collision avoidance in the COLREGS-COST-HIGH situations where collision avoidance following the International Regulations for Preventing Collisions at Sea(COLREGS) costs too much. Automatic Identification System(AIS) makes data communication between two vessels possible, and negotiation methods can be used to optimize vessel collision avoidance. In this paper, a negotiation framework is put forward to enable vessels to negotiate to optimize collision avoidance in the COLREGS-COST-HIGH situations at open sea. A vessel vector space is defined and therewith a cost model is put forward to evaluate the cost of collision-avoidance actions. Negotiations between a give-way vessel and a stand-on vessel and between two give-way vessels are considered respectively to reach overall low cost agreements. With the framework proposed in this paper, two vessels involved in a COLREGS-COST-HIGH situation can negotiate with each other to get a more economic overall plan of collision avoidance than that suggested by the traditional collision-avoidance expert systems.

  • PDF

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Obstacle Avoidance of GNSS Based AGVs Using Avoidance Vector (회피 벡터를 이용한 위성항법 기반 AGV의 장애물 회피)

  • Kang, Woo-Yong;Lee, Eun-Sung;Chun, Se-Bum;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.535-542
    • /
    • 2011
  • The Global Navigation Satellite System(GNSS) is being utilized in numerous applications. The research for autonomous guided vehicles(AGVs) using precise positioning of GNSS is in progress. GNSS based AGVs is useful for setting driving path. This AGV system is more efficient than the previous one. Escipecially, the obstacle is positioned the driving path. Previcious AGVs which follow marker or wires laid out on the road have to stop the front of obstacle. But GNSS based AGVS can continuously drive using obstacle avoidance. In this paper, we developed collision avoidance system for GNSS based AGV using laser scanner and collision avoidance path setting algorithm. And we analyzed the developed system.

Real time obstacle avoidance for autonomous mobile robot (이동 로봇의 실시간 충돌회피)

  • 권영도;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.434-439
    • /
    • 1993
  • This paper present a sensor based obstacle avoidance method which is based on a VFH(Vector Field Histogram) method. The basic idea of obstacle avoidance is to find a minimum obstacle direction and distance. From the minimum sonar index and the target direction high level system determine steering angle of mobile robot. The sonar sensor system consists of 12 ultra sonic sensor, and each sensor have its direction and safety value. This method has advantage on calculation speed and small memory. This method is implemented on indoor autonomous vehicle'ALiVE-2'.

  • PDF