• Title/Summary/Keyword: Aviation fuel

Search Result 128, Processing Time 0.022 seconds

Evaluation of Fuel Consumption of B747-400 in Short-range Flight with Catapult Assist

  • Lee, Changhyeok;Park, Hyunchul
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.40-46
    • /
    • 2020
  • Recently, the aviation industry has sought to reduce its carbon usage in aircraft operations. Specifically, the industry is proceeding with the development of ultra-large turbofan engines and the development of hybrid electric engines to reduce the fuel consumption of aircraft. In one case, Airbus is developing as its future goal an aircraft with a short take-off distance that uses a catapult. In this study, when a b747-400 aircraft with two of the four engines removed was tested using a catapult, its fuel consumption was compared with that of the original aircraft. Fuel consumption was calculated using the mass flow consumption formula. Further, the aircraft L/D ratio caused by engine removal was interpreted using the CFD Tool, Ansys Fluent. The results showed that the lift ratio was improved by about 7% and that the fuel efficiency was improved by about 14%.

Study on Characteristics of Change of Physical/Chemical Property in Domestic Aviation Fuel by the Quality Monitoring Analysis (국내 항공유(Jet A-1) 품질모니터링을 통한 물성 변화 특성 연구)

  • Doe, Jin-woo;Youn, Ju-min;Jeon, Hwa-yeon;Yim, Eui-soon;Lee, Joung-min;Kang, Hyung-kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1327-1337
    • /
    • 2018
  • Aviation fuel oil is more strictly controlled than other transport fuels because it can lead to major accidents in the event of a problem. The quality standards of the aircraft are specified by the domestic Korean Standard, the American Society for Testing and Materials and the International Air Transport Association, respectively. From 2016 to 2017, the quality analysis of 6 items such as aromatic content, sulfur content and distillation characteristics was carried out on the jet fuel produced at five domestic refineries. Domestic production of jet fuel has been shown to be in conformity with the quality standards and has been maintained at a constant level throughout the year. Compared with the specification of ASTM and IATA the aromatic content of domestic KS specification is set to be strictly 1.5 wt% higher than the ASTM and IATA setting specification, but it satisfies this specification sufficiently. In addition, other items such as sulfur content, distillation property and flash point satisfied both domestic and international specification.

Full composites hydrogen fuel cells unmanned aerial vehicle with telescopic boom

  • Carrera, E.;Verrastro, M.;Boretti, Alberto
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.17-37
    • /
    • 2022
  • This paper discusses an improved unmanned aerial vehicle, UAV, configuration characterized by telescopic booms to optimize the flight mechanics and fuel consumption of the aircraft at various loading/flight conditions.The starting point consists of a full-composite smaller UAV which was derived by a general aviation ultralight motorized aircraft ULM. The present design, named ToBoFlex, extends the two-booms configuration to a three tons aircraft. To adapt the design to needs relevant to different applications, new solutions were proposed in aerodynamic fields and materials and structural areas. Different structural solutions were reported. To optimize aircraft endurance, the innovative concept of Telescopic Tail Boom was considered along with two different tails architecture. A new structural configuration of the fuselage was proposed. Further consideration of hydrogen fuel cell electric propulsion is now being studied in collaboration between the Polytechnic of Turin and Prince Mohammad Bin Fahd University which could be the starting point of future investigations.

Aircraft Emission and Fuel Burn Estimation Due to Changes of Payload and Range (비행거리와 적재량 변화에 따른 항공기 온실가스 배출량 및 연료소모량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Park, Byung-woon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated the development of an aircraft emission estimation and prediction system as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. Hence, in this research, using Piano-X software which was developed by Lissys Co., fuel consumption and emissions for 3 types of aircraft were estimated for different design payloads with various flight distances and flight paths. Fuel burns for economy speed, long range cruise speed, maximum range speed were also investigated with various flight distances and altitudes.

Reliability of Measurement Estimation in Altitude Engine Test (엔진 고도 시험의 측정 신뢰성 평가)

  • Lee, Jin-Kun;Yang, In-Young;Yang, Soo-Seok;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • The altitude engine test is a sort of engine performance tests carried out to measure the performance of a engine at the simulated altitude and flight speed environments prior to that at the flight test. During the performance test of a engine, various values such as pressures and temperatures at different positions, air flow rate, fuel flow rate, and the load by thrust are measured. These measured values are used to derive the representative performance values such as the net thrust and the specific fuel consumption through a momentum equation. Hence each of the measured values has certain effects on the total uncertainty of the performance values. In this paper, the combined standard uncertainties of the performance variables at the engine test were estimated by the uncertainty analysis of the measurement values and the repeatability and reproducibility of the altitude test measurement were assessed by the analysis of variation on the repeated test data with different operator groups.

  • PDF

Emission Estimation for Airports in Korea Using AEIC Program (AEIC 프로그램을 사용한 국내 공항 항공 온실가스 배출량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated aircraft emission estimation and prediction as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. We obtained airline flight schedules for all the airports in Korea that are included in OAG data. Fuel burn and emission index of LTO flight which contains take off, climb and approach under 3000ft and Non LTO flight which contains climb, cruise and descent over 3000ft for all the airports in Korea in 2005 were estimated and analysed for each condition using AEIC software which has been developed by MIT Lab for Aviation and Environment.

Determination of fatty acid methyl esters (FAME) content in aviation turbine fuel using multi-dimensional GC-MS (Multi-dimensional GC-MS를 이용한 항공터빈유의 FAME 함량 분석)

  • Youn, Ju Min;Doh, Jin Woo;Hwang, In Ha;Kim, Seong Lyong;Kang, Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.717-726
    • /
    • 2017
  • The current allowable cross-contamination level of fatty acid methyl esters (FAME) in aviation turbine fuel (AVTUR) is 50 mg/kg, due to that the presence of FAME in AVTUR can significantly impact the fuel supply system and jet engine. It has been difficult to analyze the level of FAME in AVTUR, since it is consisted of a lot of hydrocarbons. In this study, thus, a new method using multi-dimensional GC-MS (MDGC-MS) was proposed in order to determine the FAME level in AVTUR effectively. Applying to MDGC-MS with Deans switching system enabled us to detect and quantify the FAME with low carbon numbers such as those derived from coconut oil and palm kernel oil. The matrix effect of MDGC-MS method, which could shift the FAME peaks to slightly longer retention times, was reduced by 20 times compared with that of 1-dimensional GC-MS reference method. This developed method could be suitable for qualitative and quantitative analyses to determine the contamination level of trace FAME in AVTUR.

Implementation of Fuel Quantity Measurement System for Aircraft Using Capacitive Fuel Sensor (정전용량형 연료센서를 이용한 항공기 연료량측정시스템 구현)

  • Yang, Junmo;Yang, Sungwook;Lee, Sangchul;Yi, Yongsik
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.17-22
    • /
    • 2018
  • The amount of fuel, which affects aircraft endurance, needs to be measured accurately. This paper deals with the implementation of a fuel quantity measurement system that consists of capacitive fuel sensor, DAQ board, and Labview software. The main circuit of the implemented system for measuring fuel quantity is simulated with Pspice to identify parameters, which are related to the change of fuel quantity. After simulation, we established that Vrms changes with the variation of fuel amount. The Vrms, which is the output of fuel sensor, is transmitted to the Labview software via the DAQ board of the implemented fuel quantity measurement system. The fuel quantity is also calculated using this software. The present simulation results indicated that the accuracy of the implemented fuel quantity measurement system improved with the filter application.

The high altitude test method of Scramjet engine combustor model (스크램제트 연소기 모델의 고공시험 연구)

  • Woo Kwan Je;Kim Young Soo;Skivin V. A
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.271-274
    • /
    • 2002
  • This paper is investigated construction of the Scramjet test facility and test method of Scramjet engine combustor model. Scramiet engine combustor model test was performed at Lab C-16BK CIAM (Central Institute of Aviation Motors) at Tyraevo in Moscow. The velocity of flow in the combustion chamber equal to Mach number 2.49 with single hole fuel spray nozzle injector and test duration equal to 7 seconds. Therefore In this paper is showed high altitude test method of Scramjet combustor model and the proper structure of combustor with single hole fuel spray nozzle.

  • PDF

Determination of trace icing Inhibitors (ether type) in free-floating fuels by gas chromatography-mass spectrometry

  • Shin, Ho-Sang;Ahn, Hye-Sil;Jung, Dong-Gyun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.196-200
    • /
    • 2003
  • A gas chromatography/mass spectrometric assay method was developed for the simultaneous determination of ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethyl ether (DEGME) in spilled aviation fuels. Ethylene glycol monobutyl ether (EGBE) and ethylene glycol monoethyl ether (EGEE) were used as internal standard and surrogate, respectively. The sample preparation consists of back-extraction with 7 mL of methylene chloride after extraction of 50 mL of fuel with 2 mL of water. The extract was concentrated to dryness and dissolved with 100L of methanol and analyzed by CC-MS (SIM). The peaks had good chromatographic properties by using semi-polar column and the extraction of these compounds from fuel also gave high recoveries of 75 and 85 % with small variations for EGME and DEGME, respectively. Method detection limits were 1.3 ng/mL for EGME and 1.0 ng/mL for DEGME in spilled fuel. The method may be useful for fuel-type differentiation between kerosene and JP-8, which may originate from the storage tank.

  • PDF