• 제목/요약/키워드: Aviation Fuel

검색결과 126건 처리시간 0.021초

방향전환 기동 시 액체연료가 위성체의 관성모멘트 및 자세운동에 미치는 영향 분석 (Effects of Liquid Fuel on Spacecraft's Moment of Inertia and Motion during Reorientation)

  • 강자영;이상철
    • 한국항공운항학회지
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, reorientation based on angular momentum exchange is applied for a bias momentum stabilized satellite, which is equipped with a spherical fuel tank, and the effect of liquid slosh on the attitude properties such as inertia tensor and angular rate is investigated. In order to represent the slosh motion of liquid an equivalent mechanical model is adopted and full nonlinear equations of motion for three-body system are derived. Computer simulations are performed for several cases, which use the viscosity of liquid and the center location of the tank as input parameters, mainly in order to observe how the viscosity of liquid and the center location of the tank influence the spacecraft’s attitude. The investigation includes observing time-variations of the inertia tensor, especially presence of components of product of inertia during the maneuver.

  • PDF

항공기용 연료계통 압력조절밸브의 FMEA를 적용한 신뢰성 설계 (Reliability Design Using FMEA for Pressure Control Regulator of Aircraft Fuel System)

  • 배보영;이재우;변영환
    • 한국항공운항학회지
    • /
    • 제17권1호
    • /
    • pp.24-28
    • /
    • 2009
  • The reliability assessment is performed for Pressure Control Regulator of Aircraft Fuel System using reliability procedure which consists of the reliability analysis and the Failure Modes and Effects Analysis(FMEA). The target reliability as MTBF(Mean Time Between Failure) is set to 5000hr. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS) up to level 3, and a reliability structure is defined by schematics of the system. Since the components and parts that have been collected through EPRD/NPRD. The predicted reliability to meet mission requirements and operating conditions is estimated as 4375.9hr. To accomplish the target reliability, the components and parts with high RPN have been identified and changed by analyzing the potential failure modes and effects. By changing the configuration design of components and parts with high-risk, the design is satisfied target reliability.

  • PDF

로켓비행체의 액체연료슬로시 모델링 및 SPM을 이용한해석 (Modeling and SPM Analysis of Fuel Slosh in a Rocket-Thrusting Vehicle)

  • 강자영
    • 한국항공운항학회지
    • /
    • 제13권3호
    • /
    • pp.34-42
    • /
    • 2005
  • The objectives of the study are to present simple physical and mathematical models of liquid fuel in the tank of an aerospace vehicle such launch vehicle or missile and to investigate its dynamic stability for a parameter space. In this paper, liquid in the container is modeled as multi-mass system subject to parametric excitations, and a stability diagram for determination of stable-unstable regions of the motion is obtained by using an analytical method. Also, computer simulations are conducted at various parameter points to verify the analytical results, and time histories of motion are compared to explain the effect of variation of parameters of the system.

  • PDF

BADA를 활용한 4-D 경로 모델링법 개발 (Development of 4-D Trajectory Modeling using BADA)

  • 오은미;은연주;전대근
    • 한국항공운항학회지
    • /
    • 제20권2호
    • /
    • pp.1-6
    • /
    • 2012
  • Four dimensional(4-D) trajectory modeling is conducted based on flight plan. The flight plan is divided into several segments which represent certain operating flight modes. Thrust, drag and fuel consumption rate of an aircraft are calculated using BADA provided by Eurocontrol. The trajectory is modeled with the rate of climb/descent calculated with Total-Energy Equation. The simulation results with a typical aircraft and its flight plan indicate that the trajectory modeled corresponds well with the suggested flight plan. The performance profiles including total endurance time and time history for speed, thrust, drag and fuel consumption were also appropriately generated.

소형 터보제트 엔진의 서지 제어를 위한 퍼지추론 기법 (Surge Control of Small Turbojet Engines with Fuzzy Inference Method)

  • 지민석;홍승범
    • 한국항공운항학회지
    • /
    • 제17권4호
    • /
    • pp.1-7
    • /
    • 2009
  • The surge control system in unmanned turbojet engine must be capable of accounting uncertainties from engine transient conditions, random fluctuations of key parameters such as air pressure and fuel flow and engine modeling errors. In this paper, taking into consideration of its effectiveness as well as system stability, a fuzzy PI controller is proposed. The role of the fuzzy PI controller is to stabilize the unmanned aircraft upon occurring unexpected engine surge. The proposed control scheme is proved by computer simulation using a linear engine model. The simulation results on the state space model of a small turbojet engine illustrate the proposed control system achieves the desired performance.

  • PDF

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

Evaluation of Fuel Consumption of B747-400 in Short-range Flight with Catapult Assist

  • Lee, Changhyeok;Park, Hyunchul
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.40-46
    • /
    • 2020
  • Recently, the aviation industry has sought to reduce its carbon usage in aircraft operations. Specifically, the industry is proceeding with the development of ultra-large turbofan engines and the development of hybrid electric engines to reduce the fuel consumption of aircraft. In one case, Airbus is developing as its future goal an aircraft with a short take-off distance that uses a catapult. In this study, when a b747-400 aircraft with two of the four engines removed was tested using a catapult, its fuel consumption was compared with that of the original aircraft. Fuel consumption was calculated using the mass flow consumption formula. Further, the aircraft L/D ratio caused by engine removal was interpreted using the CFD Tool, Ansys Fluent. The results showed that the lift ratio was improved by about 7% and that the fuel efficiency was improved by about 14%.

국내 항공유(Jet A-1) 품질모니터링을 통한 물성 변화 특성 연구 (Study on Characteristics of Change of Physical/Chemical Property in Domestic Aviation Fuel by the Quality Monitoring Analysis)

  • 도진우;연주민;전화연;임의순;이정민;강형규
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1327-1337
    • /
    • 2018
  • 항공유는 문제가 발생 시 대형사고로 이어질 수 있기 때문에 다른 수송용 연료보다 더 엄격히 관리되고 있다. 항공유의 품질기준은 국내의 한국산업표준(KS), 미국재료협회(ASTM)와 국제운송협회(IATA)에서 각각 규정하고 있다. 2016년부터 2017년까지 국내 정유사의 5개 공장에서 생산되는 항공유에 대하여 방향족 함량, 황 함량 및 증류성상 등 6개 항목에 대하여 품질분석을 실시하였다. 국내에서 생산된 항공유는 품질기준에 적합한 것으로 나타났으며, 연간 일정하게 유지되고 있었다. 국제기준인 ASTM과 IATA의 품질기준과 비교했을 때, 방향족 함량은 국내 KS 기준이 ASTM 및 IATA 설정기준보다 1.5 wt% 엄격하게 설정되어 있으나 이 기준을 충분히 만족시키는 것으로 나타났다. 또한, 황 함량, 증류성상 및 인화점 등 나머지 항목들도 국내와 국제기준을 모두 충족하는 것으로 나타났다.