• Title/Summary/Keyword: Averaging Pitot Tube

Search Result 3, Processing Time 0.015 seconds

Location of pressure sensing holes in MPA flowmeter and discharge coefficients (MPA 유량계 압력감지공의 위치와 유출계수)

  • Kim, Raymond K.;Choi, Sung Kil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.160-165
    • /
    • 2004
  • MPA (Multi-Point Averaging) flow element is a new type of differential pressure (DP) flow-sensing device that was developed by Seojin Instech to improve the operating characteristics of the conventional Averaging Pilot Tube (APT) flow elements. Operating characteristics of a flowmeter in general can be defined in terms of measurement accuracy and range. Improvement of accuracy and expanding the range of flow measurement were the two main objectives of the development. To achieve these dual objectives several upstream and downstream pressure-sensing holes were placed in MPA flow element. During the course of the development it was found that certain arrangements of the pressure-sensing holes improved measurement accuracy but did not expand operating flow range of Averaging Pilot Tubes. Development tests were performed with water between Reynolds number of 50,000 and 1,000,000 in the four-inch test line at the Alden Research Laboratory, U.S.A. Purpose of this paper is to present the relationship between the various locations of the pressure-sensing holes and the performance characteristics of MPA flow element. Furthermore, the operating characteristics of the best performing MPA are compared with those of typical orifice and APT.

  • PDF

Investigation on the Effective Calibration of Annubar (다점식 피토관의 효율적인 교정에 대한 연구)

  • Choi Yong-Moon;Choi Hae-Man;Choi Ji-Chul;Hong Kyung-Ki;Han Sang-Woo;Kim Woong-Sun;Chun Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.373-380
    • /
    • 2006
  • Annubar is one of popular tools to measure the exhausted gas flow rate from the stacks. For the accurate monitoring of the amount of discharged pollutants, calibration of annubar is very important. Calibration of annubar has been carried out in a wind tunnel. When the length of annubar is longer than the test section size of wind tunnel, it is very difficult to find out typical value of annubar coefficients. So, a measurement technique to calibrate annubar longer than the size of the test section of wind tunnel must be developed. In the present study, an experiment is performed to measure the annubar coefficients in such a limited size of the wind tunnel. The experimental annubar coefficient by using a partial blocking technique is very close to the annubar coefficient of normal condition.

Instrumentation for Performance Test of Turbo Compressor (터보 압축기 성능시험을 위한 계측기기 선정)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • The instrumentation was studied in order to measure aerodynamic performance and efficiency of a compressor as a component of a 5MW-class gas turbine for power generation. In case of an axial compressor, the distributions of static pressure on a casing can be obtained by averaging at each stage and those of total pressure and temperature in the flow field of the compressor can be measured with a Kiel temperature probe. In case of a centrifugal compressor, the static pressures at the hub and the tip, respectively, of an impeller exit are considerably different, so the pressures need to be measured at both positions and thereafter averaged. The distributions of static pressures in a diffuser and a deswirler are measured at ten positions along five streamlines in one pitch. In addition the flow field can be measured in detail by 5-hole Pitot tube in order to analyze the flow characteristics of the core flow region and wake region and the rotor-stator interaction of the compressor.

  • PDF