• 제목/요약/키워드: Average turbidity

검색결과 141건 처리시간 0.028초

센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선 (Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir)

  • 김종민;이상웅;권시윤;정세웅;김영도
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.931-939
    • /
    • 2022
  • 우리나라의 경우 강수량의 2/3 정도가 하절기에 집중되는 강우특성상 해마다 여름철 홍수기의 탁수 문제가 다양하게 발생하고 있다. 이상강우와 기상이변에 의한 집중강우가 증가 추세이며, '02년 태풍 루사', '03년 태풍 매미', '06년 에위니아'부터 20년 마이삭, 하이선 까지 장마와 태풍에 의한 유입량이 급증하는 시기 탁수의 유입으로 수중 탁도가 급상승하며 댐 저수지 내 탁수 문제가 발생하였다. 특히 연 평균 물사용량의 대부분을 하천 및 댐 저수지를 이용하는 우리나라의 경우 탁수 문제가 장기화될 경우 댐 하류 해당 지역 농업, 공업, 수생태 등 사회적, 환경적으로 많은 문제를 발생시킨다. 이러한 탁수 예측을 통한 대응을 위해 탁수 모델링에 대한 연구가 활발히 진행되고 있다. 탁수 현황을 모의하기 위해서는 유량, 수온, SS 데이터가 필요하다. 이를 위해 국가측정망에서 하천 및 댐 저수지 내 SS를 측정하여 탁수를 측정 하고 있으나 설비가 미흡하여 데이터 해상도가 낮다는 한계점이 있으며 주요 댐 저수지 내에서는 수자원공사에서 관리하는 자동 측정기기를 활용하여 높은 데이터 해상도를 유지 하고 있으나 댐 별, 기상 조건에 따라 미측정 기간이 존재한다. 탁도를 측정을 위한 센서로는 Optical Backscatter Sensor (OBS), YSI 등이 있으며 SS를 측정하기 위한 센서는 레이저부유사측정기(Laser In-Situ Scattering and Transmissometry, LISST) 등의 장비를 이용하고 있다. 하지만 이런 첨단 센서의 경우 또한 수중에 고정하여 측정하기에는 장비의 안정성 등의 이유로 한계가 있다. 따라서, 취득된 유량, 수온, SS, 탁도 데이터를 기반으로 분석을 통해 미측정 기간이 존재함으로 입력자료에 활용되는 SS를 산정하기 위해 관계식 개발을 필요로한다. 본 연구에서는 댐 방류구 인근 지점 측정 데이터를 기반으로 개발된 탁도-SS 관계식을 통해 수자원 공사 SURIAN 시스템에서 활용되고 있는 AEM3D 모델을 이용하여 탁수 발생 예측 정확도 개선을 하고자 하였다.

비점오염원 관리지역(소양호) 목표수질 달성도 평가 (Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution)

  • 최재완;강민지;류지철;김동일;임경재;신동석
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.

서울시 수도수의 이화학적 수질조사 (An Experimental Study on the Chemical Values of the Tap Water in Seoul)

  • 홍태용
    • 한국환경보건학회지
    • /
    • 제7권1호
    • /
    • pp.21-31
    • /
    • 1981
  • This survey was carried out to investigate the temperature, pH value, nitrogen (ammonia, nitrite, nitrate), turbidity, color, chloride ion, $KMnO_4$ consumed, and hardness as chemical analysis of the tap water in Seoul city area during the period from September to Octobor, 1979, and to observe the differences among the values by the distance from the water purification plant and by the district supplied tap water from-the each water purification plant. The results obtained were as follows: 1) An average of the water temperature was $19.8\pm 0.2\circ$C. 2) An average of pH was $7.18\pm 0.02$. The difference among each district was statistically significant (p<0.01), but it was not observed among each distance. 3) An average of turbidity was $1.25\pm 0.12$ ppm. The difference among each district was highly significant (p<0.01), respectively, but not among each distance. 4) An average of color was $1.43\pm 0.16$ ppm, and there were statistically significant differences by the distance and by the district (p<0.01). 5) An average of ammonia nitrogen was $0.022\pm 0.005$ ppm. The differences among each distance, and district were statistically significant (P<0.01). 6) An average of nitrite nitrogen was $0.0050\pm 0.0013$ ppm, and the difference among each distance was highly significant (p<0.01), respectively, and each district showed statistical significance (p<0.01). 7) An average of nitrate nitrogen was $0.82\pm 0.08$ ppm. The difference among each district was significant (p<0.05), and each distance showed high significance (p<0.01). 8) An average of $KMnO_4$ consumed was $3.73\pm 0.16$ ppm, and the difference among each district was significant (p<0.05), but it was not observed among each distance. 9) An average of chloride ion was $8.56\pm 0.28$ ppm, and the difference among each district was higly significant (p<0.01), respectively, but it was not observed among each distance. 10) An average of hardness was $40.69\pm 1.17$ ppm, and there was statistically significant difference by each district (P<0.01), but not by distance. 11) The interrelation between temperature and pH of the tap water revealed the negative correlation from the coefficient of it as showed r=-0.6073 and p<0.01. 12) Except water temperature, there were negative correlationships between pH and other water qualities. 13) Correlation coefficients of $KMnO_4$ comsumed and ammonia nitrogen, nitrite nitrogen were statistically significant but that of $KMnO_4$ consumed and nitrate nitrogen showed no statistical correlationship. 14) Ammonia nitrogen seems to have high correlationship with nitrite nitrogen(r= +0.6669), but not with nitrate nitrogen. 15) Nitrate nitrogen seems to have statistically significant correlationship with nitrite nitrogen (r=+0.4959), but not with ammonia nitrogen. 16) The interrelation between chloride ion and hardness of the tap water revealed positive correlation from the coefficient of it as showed as r=+0.4888 and p<0.01.

  • PDF

농업적 용수재이용을 위한 간헐분사 완속모래여과 하수재처리 효율 평가 (Feasibility Study of Intermittent Slow Sand Filtration for Agricultural Reuse of Reclaimed Water)

  • 윤춘경;정광욱;함종화;황하선
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.160-170
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of intermittent slow sand filtration for agricultural reuse of reclaimed water. The effluent of biofilter for 16-unit apartment was used as influent to the slow sand filtration system at 0.6 $m^3$/day loading rate using 15 seconds spray in every 10 minutes on the about 1 $m^2$ surface area and 0.5 m depth. The influent concentrations of total coliform (TC), fecal coliform (FC) and E. coli were in the range of 10.000 MPN/100 mL. and they were reduced to less than 1,000 MPN/100 mL after filtration with average of 320, 270, and 154 MPN/100 mL, respectively, showing over 95 % removal. Turbidity and SS were improved effectively and their average concentration was reduced to 0.8 NTU and 1.7 mg/L, respectively, and removal rate was about 50 %. Average BOD and COD concentrations were also reduced substantially to 2.6 and 25.8 mg/L with about 55 and 21 % removal rate, respectively. Nutrients removal was relatively low and removal rate for T-N and T-P was low however, remaining nutrients might be beneficial and less concerned in case of agricultural reuse. The concentration of biofilter effluent used in this experiment was in the range of secondary treatment effluent but slightly stronger than the one from existing wastewater treatment plants (WWTPs). Therefore, intermittent slow sand filtration might be also applicable to the effluent from WWTPs as long as its agricultural reuse is available. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, the intermittent slow sand filtration was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper is a preliminary result from pilot study and further investigations are recommended on the optimum design parameters before full scale application.

상수처리를 위한 파일롯 규모의 정밀여과/한외여과 시스템 (A Pilot-Scale Microfiltration/Ultrafiltration system for Drinking Water Treatment)

  • 김한승;오정익;김충환
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.770-777
    • /
    • 2004
  • Three pilot-scale membrane systems were operated using lake water as influent in this study. Microfiltration (MF) membrane with pore size of 0.01 m was used in Systen I of which filtration mode was set at constant pressure of $1kgf/cm^2$. Ultrafiltration (UF) membranes with molecular cutoff (MWCO) of 80,000 and 13,000 were used in System II-1 and II-2, respectively. Constant flow mode was applied at the range between 0.7 and $1.5m^3/m^2{\cdot}d$ (average of $1.1m^3/m^2${\cdot}d) for System II-1 and between 0.37 and $1.65m^3/m^2{\cdot}d$ (average of $1.18m^3/m^2{\cdot}d$) for System II-2. In System I, the flux changed from $1m^3/m^2{\cdot}d$ to $0.2m^3/m^2{\cdot}d$ during the operation time of 5 months. System II showed recovery of 94% under the allowable maximum pressure of $3kgf/cm^2$ during the same operation period. From these results, the efficient operation was observed in constant flow mode with respect to filtration time and recovery. Average filtrate turbidity showed 0.0071 NTU in System I and 0.0054 NTU in System II, which implied that high turbidity removal was obtained in both MF and UF systems with no significant difference between MF and UF. From the fact that membrane flux depends largely on membrane type and operation mode, a guideline of optimum design and operation should be suggested for application of membrane systems to full scale water treatment.

역삼투막 전처리로서의 2단 섬유상 여과기를 이용한 정수처리 연구 (Potable Water Treatment Study using the Double Stage Fiber Filter for the Pre-treatment of the Reverse Osmosis Membrane)

  • 배시열;장형욱;윤창한
    • 멤브레인
    • /
    • 제20권2호
    • /
    • pp.97-105
    • /
    • 2010
  • 2009년 1월 3일부터 12월 1일까지 11개월간 공업용수를 주변지역에 공급하는 A정수장 응집침전조의 상등수를 대상으로 실험을 진행한 본 연구는 RO막 전처리 장치로서의 압력식 섬유여과기인 PCF 여과기 2대를 직렬연결한 공정의 적용 가능성을 평가한 것이다. 성능평가는 SDI (Silt Density Index)를 통해 간접적으로 RO막에 대한 전처리 성능을 평가하였다. 실험 기간 동안 PCF Filter로 유입된 원수의 탁도는 평균 0.79 (0.28~4.01) NTU이었으며, 처리수의 탁도는 평균 0.16(0.04~0.50) NTU로 탁도 제거효율은 평균 77%이었다. 일일 평균 처리유량은 약 230 $m^3$/day고 평균 역세유량은 8.7 $m^3$/day로 평균 역세수량은 3.8%로 나타났다. 여과수의 탁도 및 SDI 값은 측정 전 보관시간에 따라 증가하는데 이번 실험에서 몇몇 시료는 1~11일 동안 보관한 후 탁도 및 SDI가 측정되었으며, 이들 전체의 평균 SDI 값은 3.6 (2.26~5.00)으로 RO 제조업체에서 RO의 수명보증을 위해 통상 요구하는 SDI 값인 5.0 이하를 나타내었다. 따라서 RO 전처리공정의 SDI 측면에서 2단 섬유여과 공정이 적합함을 알 수 있었다.

남해안 6개 도서의 조하대 해조류 군집구조 (Macroalgal Community Structure on the Subtidal of Southern Six Islands, Korea)

  • 허진석;유현일;박은정;하동수
    • 환경생물
    • /
    • 제35권4호
    • /
    • pp.595-603
    • /
    • 2017
  • The macroalgal community structure was examined at the subtidal zones of six study sites, on the Southern coast of Korea from between May and August 2015. A total of 132 seaweeds, comprising 10 green, 28 brown and 94 red Seaweed, were identified. The seaweed biomass was $80.32g\;dry\;wt.\;m^{-2}$ in average, and it was maximal at Geomundo ($166.94g\;dry\;wt.\;m^{-2}$) and minimal at Byeongpungdo ($14.52g\;dry\;wt.\;m^{-2}$). On the basis of the biomass, the Ecklonia cava was a representative species, distributed widely in the subtidal zone of the three islands (Yeoseodo, Geomundo, Baekdo). Also, the Sargassum sp. was dominant at Sejondo and Hongdo. The turbidity and light transmittance was divided into two groups. The seaweed community structure of group A (Byeongpungdo, Sejondo, Geomundo) was characterized by high turbidity, low light transmittance and a lower habitat depth than were observed in group B (Hongdo, Baekdo, Yeoseodo). As the water depth increased, the biomass decreased due to the lowered light transmittance. In Byeongpungdo and Sejondo, which showed high turbidity and low light transmittance, the degree of seaweed coverage was decreased with the depth of water. The ESGII ratio of the Ecological Status Group was higher than fourty percentage in Byeongpungdo and Baekdo. Community indices were as follows: dominance index (DI) 0.35-0.90, richness index (R) 7.03-17.93, evenness index (J′) 0.22-0.60, and diversity index (H′) 0.79-2.18. The Macroalgal zonation of the subtidal zone was calculated by the Ecklonia cava and Brown algal population on five islands(Byeongpungdo, Yeoseodo, Geomundo, Beakdo, Hongdo). On the other hand, Undaria pinnatifida and Sargassum sp. dominated at Sejondo. Additionally, the biomass ratio and the species richness of green algae was lower in group A. These differences in the seaweed community structure may have resulted from the effects of turbidity and light transmittance.

도암호에서 하절기 수질의 장기적인 경향 (Long-term Trends of Summer Season of Water Quality in Lake Doam)

  • 곽성진;발데브;이창근;허우명
    • 생태와환경
    • /
    • 제46권1호
    • /
    • pp.128-134
    • /
    • 2013
  • In the summer season (June~August) during the study period of Lake Doam, average concentrations of major water quality parameters, COD, SS, TN, and TP were 4.0, 16.2, 3.129 and $0.077mg\;L^{-1}$, respectively, and Chl-a was $11.8mg\;m^{-3}$. The result has indicated that Lake Doam was a meso-eutrotrophic lake. Lake Doam data from the summer season (June~August), precipitation from 2001 to 2012, and water quality (COD, SS, TN, TP, Chl-a etc.) of seven years (2001, 2002, 2004 and 2009~2012), were statistically analyzed for long-term trends by Mann-Kendall test and Sen's slope estimator methods. The statistical results showed that precipitation, SD, COD, TN, $NO_3-N$, $NH_3-N$ and Chl-a had decreasing trends, and EC, turbidity, SS, TP and DIP had increasing trends. Suspended solids and total phosphorus were directly affected by precipitation. In the case of suspended solids, more aggressive and constructive plans need to be implemented than the current turbidity reduction project to achieve the targeted water quality ($5mg\;L^{-1}$ of SS) in Lake Doam. In particular, we need to specify a project that considers the steep topographic characteristics of high, land farming areas and precipitation conditions of the Lake Doam watershed, which can increase the efficiency of a turbidity reduction project.

도심지역 인공호의 수질관리를 위한 지표세균에 관한 연구 (A Study on Indicator Bacteria for Water Quality Management of Urban Artificial Lakes)

  • 추덕성;권혁구;이상은;이장훈
    • 한국환경보건학회지
    • /
    • 제33권4호
    • /
    • pp.299-305
    • /
    • 2007
  • Distribution of fecal pollution indicator bacteria and environmental parameter were investigated of urban artificial lakes. An average concentration of temperature, pH, SS, DO, $COD_{Mn}$, T-P, T-N, Turbidity, Chl-a were $21.5^{\circ}C$, 8.07, 116.70 mg/l, 8.66 mg/l, 2.24 mg/1, 0.52 mg/l, 1.71mg/l, 80.54 NTU, and 52.12 mg/l respectively. From the results of bivariate correlation analysis, fecal contamination indicator bacteria were found to be mutually correlated. And turbidity and suspended solid were correlated. From the results of principal component analysis, four factors were extracted. And four factors of variance explained up to 81.5 percentage. Factor 1 was pollution pattern by fecal contamination, factor 2 was physical pollution pattern by pollution source, factor 3 was natural pollution by precipitation, and factor 4 was artificial pollution pattern by organism.

Effect of $N_2$-backflushing Time in Carbon Ceramic UF & MF System for Paper Wastewater Treatment

  • Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.34-41
    • /
    • 2005
  • The wastewater discharged from a paper plant was filtrated by 3 kinds of tubular carbon ceramic UF and MF membranes with $N_2$-backflushing. The filtration time (FT) was fixed at 8 min or 16 min, and $N_2$-backflushing time (BT) was changed in 0${\~}$60 sec. The optimal condition was discussed in the viewpoints of total permeate volume ($V_T$), dimensionless permeate flux (J/Jo) and resistance of membrane fouling ($R_f$). In the viewpoints of $V_T$, J/Jo and $R_f$, the optimal $N_2$-BT was 40 sec at both FT for M9 (MWCO: 300,000 Daltons) and C005 ($0.05{\mu}m$) membranes. However, for C010 ($0.1{\mu}m$) it was 10 sec at FT=8 min, and 20 sec at FT=16 min in the viewpoints of J/Jo and $R_f$, and 5 sec at both FT in the viewpoints of $V_T$. It means that the short $N_2$-BT could reduce the membrane fouling and recover the permeate flux sufficiently for MF membrane having a large pore size as C010. Average rejection rates of pollutants were higher than $99.0\%$ for turbidity and $22.8{\~}59.6\%$ for $COD_{cr}$, but rejection rates of total dissolved solid (TDS) were lower than $8.9\%$. Therefore, the low turbidity water purified in our system could be reused for paper process.