• Title/Summary/Keyword: Average relative error

Search Result 223, Processing Time 0.031 seconds

Treatment of Nitrogen Oxides in Ambient Air using a Ion-Selective Electrode (대기중 질산화물의 이온 선택성 전극에 의한 처리)

  • 안형환;우인성;강안수;이영순;김윤선
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.40-49
    • /
    • 1990
  • For the determination of polluant NOx in ambient air, nitrate ion-selective electrode(ISE) was made. To comparison of NOx in each method, the nitrate-ISE, NEBA, Orion electrode were used to determinee NOx in ambient air. In this work, the concentration of NOx in ambient air was average 0.06ppm. The results were good agreement with those obtained by each method within a relative error of 3%, Absorbing efficiency of nitrogen oxides in ambient air was good for Alkali solution. The determination of nitrogen oxides in ambient air using the Aliquat 336N-PVC membrane electrode was one of the useful method. The best characteristics of the Aliquat 336N-PVC me,mbrane electrode were obtained with the ion-exchanger concentration level of 6.5-9.1 percent by weight. The optimal membrane composition, was 9.09wt.% of ion-exchanger, 30.95wt.% of PVC, 60.6wt.% of plasticizer (DBP), and 0.5mm of thickness. Under the above condition, the electrode approached the Nernstian slope most closely, and the linear response ranges produced the best results.

  • PDF

Measurement of Face Region Size in Motion Picture (동영상에서 블록화된 차영상 기반의 얼굴 영역 크기 측정 기법)

  • 장희준;고혜선;최영우;한헌수
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.313-316
    • /
    • 2003
  • This paper proposes a new measurement method of face region size for real-time serveillance systems. The proposed method consists of three steps. In the first step, it detects global face area based on the block-based difference images. In the second step, it measures the face region size using face color information. In the third step, it estimates the face position in the next input image using the trajectory of face regions. The experimental results have shown that the proposed algorithm measures the face size within 20% relative error on average, which is a]towable for most surveillance systems.

  • PDF

Smart AGV system using the 2D spatial map

  • Ko, Junghwan;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.54-57
    • /
    • 2016
  • In this paper, the method for an effective and intelligent route decision of the automatic ground vehicle (AGV) using a 2D spatial map of the stereo camera system is proposed. The depth information and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the automatic moving robot and the obstacle detected and the 2D spatial map obtained from the location coordinates, and then the relative distance between the obstacle and the other objects obtained from them. The AGV moves automatically by effective and intelligent route decision using the obtained 2D spatial map. From some experiments on robot driving with 480 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the objects is found to be very low value of 1.57% on average, respectably.

A Study on Hadamard Transform Imaging Spectrometers utilizing Grill Spectrometers (그릴 스펙트로미터를 적용한 하다마드 트랜스폼 이미징 스펙트로미터에 대한 연구)

  • Park, Yeong-Jae;Park, Jin-Bae;Choi, Yoon-Ho;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.601-603
    • /
    • 1998
  • In this paper, Hadamard transform imaging spectrometers utilizing Grill spectrometers are proposed. General Hadamard Transform Spectrometers (HTS) carry out one-encoding through input masks, but Grill spectrometers carry out double-encoding through entrance and exit masks. Thus Grill spectrometers increase the signal-to-noise ratio by double-encoding. we reconfigure the system by using the Grill spectrometers which use a left cyclic S-matrix instead of the conventional right cyclic one. Then, we model the system and apply the mask characteristics method, i.e. $T^{I}$ method, to complete fast algorithm. Through computer simulations, we want to prove the superiority of the proposed system by comparing with the conventional HTS. From Observations concerning the average mean square error(AMSE) associated with estimates from the $T^{I}$ spectrum-recovery method, the relative performances of the two systems are compared.

  • PDF

The Study on the SPICE Model Parameter Extraction Method for the Schottky Diode Under DC Forward Bias (DC 순방향 바이어스 인가조건에서 Schottky 다이오드의 SPICE 모델 파라미터 추출 방법에 관한 연구)

  • Lee, Un-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.439-444
    • /
    • 2016
  • The method for extracting the SPICE model parameter of Schottky diode under DC forward bias is proposed. A method for improving the accuracy of the SPICE model parameter at various temperatures is proposed. Three analysis steps according to the magnitude of the current is used in order to extract the parameters effectively. At each analysis step, initial parameters are calculated by using the current-voltage equations and the Levenberg-Marquardt analysis is proceeded. To verify the validity of the proposed method, the SPICE model parameters for the BAT45 and FSV1045 under DC forward bias is extracted. Schottky diode currents obtained from the proposed method shows the average relative error of 6.1% and 9% compared with the measured data for the BAT45 and FSV1045 sample at various temperatures.

Development of An Yearly Load Forecasting System (연간수요예측시스템의 개발)

  • Choo, Jin-Boo;Lee, Cheol-Hyu;Jeon, Dong-Hun;Kim, Sung-Hak;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.908-912
    • /
    • 1996
  • The yearly load forecasting system has been developed for the economic and secure operation of electric power system. It forecasts yearly peak load and thereafter deduces hourly load using the top-down approach. Relative coefficient model has been applied to estimate peak load of a specific date or a specific day of the week. It is equipped with graphic user interface which enables a user to easily access to the system. Yearly average forecasting error may be reduced to $2{\sim}3$(%) only if we can forecast summer-time temperature correctly.

  • PDF

Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model

  • Qadir, Danial;Nasir, Rizwan;Mukhtar, Hilmi;Uddin, Fahim
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.59-64
    • /
    • 2021
  • The rejection of sodium chloride (NaCl) and calcium chloride (CaCl2) single salt solutions were carried out for commercial nanofiltration NFDK membrane. Results showed that the NFDK membrane had a negative surface charge and had a higher observed rejection of 93.65% for calcium (Ca2+) ion and 78.27% for sodium (Na+) ions. Prediction of rejection for aqueous solutions of both salts was made using Donnan Steric Pore Model based on Extended Nernst-Planck Equation in addition to concentration polarization film theory. A MATLAB program was developed to execute the model calculations. Absolute Average Relative Error (% AARE) was found below 5% for real rejection of the NFDK membrane. This research could be used successfully to assess the membrane characterization parameter using a proposed procedure which can reduce the number of experiments.

Mass estimation of halo CMEs using synthetic CMEs based on a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.43.3-43.3
    • /
    • 2019
  • A coronal mass ejection (CME) mass is generally estimated by the total brightness measured from white-light coronagraph observations. The total brightness are determined from the integration of the Thomson scattering by free electrons of solar corona along the line of sight. It is difficult to estimate the masses of halo CMEs due to the projection effect. To solve this issue, we construct a synthetic halo CME with a power-law density distribution (ρ = ρ0r-3) based on a full ice-cream cone model using SOHO/LASCO C3 observations. Then we compute a conversion factor from observed CME mass to CME mass for each CME. The final CME mass is determined as their average value of several CME masses above 10 solar radii. Our preliminary analysis for six CMEs show that their CME mass are well determined within the mean absolute relative error in the range of 4 to 15 %.

  • PDF

Reliability and Accuracy of the Deployable Particulate Impact Sampler for Application to Spatial PM2.5 Sampling in Seoul, Korea (서울시 PM2.5 공간 샘플링을 위한 Deployable Particulate Impact Sampler의 성능 검증 연구)

  • Oh, Gyu-Lim;Heo, Jong-Bae;Yi, Seung-Muk;Kim, Sun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.277-288
    • /
    • 2017
  • Previous studies of health effects of $PM_{2.5}$ performed spatial monitoring campaigns to assess spatial variability of $PM_{2.5}$ across people's residences. Highly reliable portable and cost-effective samplers will be useful for such campaigns. This study aimed to investigate applicability of the Deployable Particulate Impact Sampler(DPIS), one of the compact impact samplers, to spatial monitoring campaigns of $PM_{2.5}$ in Seoul, Korea. The investigation focused on the consistency of $PM_{2.5}$ concentrations measured by DPISs compared to those by the Low-volume Cyclone sampler (LCS). LCS has operated at a fixed site in the Seoul National University Yeongeon campus, Seoul, Korea since 2003 and provided qualified $PM_{2.5}$ data. $PM_{2.5}$ sampling of DPISs was carried out at the same site from November 17, 2015 through February 3, 2016. $PM_{2.5}$ concentrations were quantified by the gravimetric method. Using a duplicated DPIS, we confirmed the reliability of DPIS by computing relative precision and mean square error-based R squared value ($R^2$). Relative precision was one minus the difference of measurements between two samplers relative to the sum. For accuracy, we compared $PM_{2.5}$ concentrations from four DPISs (DPIS_Tg, DPIS_To, DPIS_Qg, and DPIS_Qo) to those of LCS. Four samplers included two types of collection filters(Teflon, T; quartz, Q) and impaction discs(glass fiber filter, g; pre-oiled porous plastic disc, o). We assessed accuracy using accuracy value which is one minus the difference between DPIS and LCS $PM_{2.5}$ relative to LCS $PM_{2.5}$ in addition to $R^2$. DPIS showed high reliability (average precision=97.28%, $R^2=0.98$). Accuracy was generally high for all DPISs (average accuracy=83.78~88.88%, $R^2=0.89{\sim}0.93$) except for DPIS_Qg (77.35~78.35%, 0.82~0.84). Our results of high accuracy of DPIS compared to LCS suggested that DPIS will help the assessment of people's individual exposure to $PM_{2.5}$ in extensive spatial monitoring campaigns.

A Study on the Selection of Measuring Mode in the Permittivity Measurement Using a Circular Cylindrical Cavity (원통형 공진기를 이용한 유전율 측정방법에서 측정모드 선택에 관한 연구)

  • Lee, Won-Hui;Kang, Soon-Kuk;Choi, Hong-Ju;Hur, Jung;Lee, Sang-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.218-226
    • /
    • 1999
  • This paper describes resonant mode selection with which the relative permittivity can be measured exactly. To measure the relative permittivity, a circular cylindrical cavity filled with dielectric material is used. When the circular cylindrical cavity is filled with the dielectric material, the air gap occurs on account of machining error. Accurate relative permittivity can be obtained by using less sensitive mode in resonant frequency variation by the air gap. As a result, Average 0.009% resonant frequency variation in the vertical and the radial direction appears at $TE_{011}$ mode. It is interesting that the frequency variation by the air gap at $TE_{011}$ mode turns out to be the least sensitive.

  • PDF