Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.326-326
/
2021
장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.
Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.141-141
/
2022
Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.
International Journal of Computer Science & Network Security
/
v.22
no.11
/
pp.308-318
/
2022
Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.
Ricardo Costa Sousa;Fernando dos Santos Magaco;Daiane Cristina Becker Scalez;Jose Elivalto Guimaraes Campelo;Clelia Soares de Assis;Idalmo Garcia Pereira
Animal Bioscience
/
v.37
no.5
/
pp.817-825
/
2024
Objective: The aim of this study was to identify suitable polynomial regression for modeling the average growth trajectory and to estimate the relative development of the rib eye area, scrotal circumference, and morphometric measurements of Guzerat young bulls. Methods: A total of 45 recently weaned males, aged 325.8±28.0 days and weighing 219.9±38.05 kg, were evaluated. The animals were kept on Brachiaria brizantha pastures, received multiple supplementations, and were managed under uniform conditions for 294 days, with evaluations conducted every 56 days. The average growth trajectory was adjusted using ordinary polynomials, Legendre polynomials, and quadratic B-splines. The coefficient of determination, mean absolute deviation, mean square error, the value of the restricted likelihood function, Akaike information criteria, and consistent Akaike information criteria were applied to assess the quality of the fits. For the study of allometric growth, the power model was applied. Results: Ordinary polynomial and Legendre polynomial models of the fifth order provided the best fits. B-splines yielded the best fits in comparing models with the same number of parameters. Based on the restricted likelihood function, Akaike's information criterion, and consistent Akaike's information criterion, the B-splines model with six intervals described the growth trajectory of evaluated animals more smoothly and consistently. In the study of allometric growth, the evaluated traits exhibited negative heterogeneity (b<1) relative to the animals' weight (p<0.01), indicating the precocity of Guzerat cattle for weight gain on pasture. Conclusion: Complementary studies of growth trajectory and allometry can help identify when an animal's weight changes and thus assist in decision-making regarding management practices, nutritional requirements, and genetic selection strategies to optimize growth and animal performance.
In this study, the number of gas accidents prediction model was suggested by analyzing the gas accidents occurred in Korea. In order to predict the number of gas accidents, simple moving average method (3, 4, 5 period), weighted average method and exponential smoothing method were applied. Study results of the sum of mean-square error acquired by the models of moving average method for 4 periods and weighted moving average method showed the highest value of 44.4 and 43 respectively. By developing the number of gas accidents prediction model, it could be actively utilized for gas accident prevention activities.
Site index information given from forest site map only exist in the sampled locations. In this study, site index for unsampled locations were estimated using kriging interpolation method which can interpolate values between point samples to generate a continuous surface. Site index of Pinus densiplora in Danyang area were calculated using Chapman-Richards model by plot unit. Then site index for unsampled locations were interpolated by theoretical variogram models and ordinary kriging. Also in order to assess parameter selection, cross-validation was performed by calculating mean error (ME), average standard error (ASE) and root mean square error (RMSE). In result, gaussian model was excluded because of the biggest relative nugget (37.40%). Then spherical model (16.80%) and exponential model (8.77%) were selected. Site index estimates of Pinus densiplora throughout the entire area in Danyang showed 4.39~19.53 based on exponential model, and 4.54~19.23 based on spherical model. By cross-validation, RMSE had almost no difference. But ME and ASE from spherical model were slightly lower than exponential model. Therefore site index prediction map from spherical model were finally selected. Average site index from site prediction map was 10.78. It can be expected that regional variance can be considered by site index prediction map in order to estimate forest biomass which has big spatial variance and eventually it is helpful to improve an accuracy of forest carbon estimation.
KSCE Journal of Civil and Environmental Engineering Research
/
v.5
no.4
/
pp.121-127
/
1985
This paper deals with simultaneous geodetic networks adjustment by geographical coordinates(${\varphi}$, ${\lambda}$). The adjustment computation is performed by variation of coordinates, and the classical method with fixed points and free networks are also compared. Provisional values for observation equations are computed by extended Gauss-mid lattitude formula using existing official coordinates. Bessel ellipsoid and unit weight are adopted. The processing of a test-network by distances yields the average root mean square error of position 6.2 cm for classical method and 2.4cm for free networks. The standard error of unit weight in a test-network is $1.66{\times}10^{-6}$ radian (0.3"), and the analysis of error ellipses shows that free networks are more normally distributed errors.
In this paper, selectively attentive learning method has been proposed to improve the learning speed of multilayer Perceptron based on the error backpropagation algorithm. Three attention criterions are introduced to effectively determine which set of input patterns is or which portion of network is attended to for effective learning. Such criterions are based on the mean square error function of the output layer and class-selective relevance of the hidden nodes. The acceleration of learning time is achieved by lowering the computational cost per iteration. Effectiveness of the proposed method is demonstrated in a speaker adaptation task of isolated word recognition system. The experimental results show that the proposed selective attention technique can reduce the learning time more than 60% in an average sense.
Sea level (MSL, MHWL, or MLWL) change has been main concern to scientists and engineers and it can be primarily due to both change of climate and vertical movement of land. This paper reports the intensive analysis of the sea level changes and broad discussion of the future at the southwestern coast of Korean peninsula. Regression analysis was conducted to investigate general tendency and periodicity of the sea levels at the six different study sites such as Gunsan-I(inner port), Gunsan-O(outer port), Mokpo, Yeosu, Heuksan and Jeju and the results were compared with global values. Besides the changes of sea levels due to global warming, the influence of the man-made structure such as seadike and seawall was attempted to quantify using the minimization of the Root Mean Square(RMS) error. The results show that it is a general tendency that the values of mean sea level rise at the southwestern coast of Korean Peninsula, especially at Gunsan-I and Jeju, are somewhat larger compared to global average values. There is also some evidence that tidal amplifications are found just after construction of man-made structure at Gunsan-I and Mokpo. However, both sites show different mechanism in relation to tidal choking, tidal flat and river discharge. The impact due to construction of man-made structure is considerably larger at Mokpo site, while the impacts due to man-made structure and the effect of sea level rise are relatively identical at Gunsan-I site. This study is expected to provide some intuition to future design.
Kim, Minkyu;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
Journal of Korean Society on Water Environment
/
v.35
no.5
/
pp.432-438
/
2019
The purpose of this study is to predict Trophic Diatom Index (TDI) in tributaries of the Han River watershed using the random forest algorithm. The one year (2017) and supplied aquatic ecology health data were used. The data includes water quality(BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, water temperature, DO, pH, conductivity, turbidity), hydraulic factors(water width, average water depth, average velocity of water), and TDI score. Seven factors including water temperature, BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, and average water depth are selected by the Correlation Feature Selection. A TDI prediction model was generated by random forest using the seven factors. To evaluate this model, 2017 data set was used first. As a result of the evaluation, $R^2$, % Difference, NSE(Nash-Sutcliffe Efficiency), RMSE(Root Mean Square Error) and accuracy rate show that this model is compatible with predicting TDI. To be more concrete, $R^2$ is 0.93, % Difference is -0.37, NSE is 0.89, RMSE is 8.22 and accuracy rate is 70.4%. Also, additional evaluation using data set more than 17 times the measured point was performed. The results were similar when the 2017 data set were used. The Wilcoxon Signed Ranks Test shows there was no statistically significant difference between actual and predicted data for the 2017 data set. These results can specify the elements which probably affect aquatic ecology health. Also, these will provide direction relative to water quality management for a watershed that must be continuously preserved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.