• Title/Summary/Keyword: Average mean square error

Search Result 218, Processing Time 0.03 seconds

Effective Drought Prediction Based on Machine Learning (머신러닝 기반 효과적인 가뭄예측)

  • Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

Improving SARIMA model for reliable meteorological drought forecasting

  • Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.141-141
    • /
    • 2022
  • Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.

  • PDF

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

B-spline polynomials models for analyzing growth patterns of Guzerat young bulls in field performance tests

  • Ricardo Costa Sousa;Fernando dos Santos Magaco;Daiane Cristina Becker Scalez;Jose Elivalto Guimaraes Campelo;Clelia Soares de Assis;Idalmo Garcia Pereira
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.817-825
    • /
    • 2024
  • Objective: The aim of this study was to identify suitable polynomial regression for modeling the average growth trajectory and to estimate the relative development of the rib eye area, scrotal circumference, and morphometric measurements of Guzerat young bulls. Methods: A total of 45 recently weaned males, aged 325.8±28.0 days and weighing 219.9±38.05 kg, were evaluated. The animals were kept on Brachiaria brizantha pastures, received multiple supplementations, and were managed under uniform conditions for 294 days, with evaluations conducted every 56 days. The average growth trajectory was adjusted using ordinary polynomials, Legendre polynomials, and quadratic B-splines. The coefficient of determination, mean absolute deviation, mean square error, the value of the restricted likelihood function, Akaike information criteria, and consistent Akaike information criteria were applied to assess the quality of the fits. For the study of allometric growth, the power model was applied. Results: Ordinary polynomial and Legendre polynomial models of the fifth order provided the best fits. B-splines yielded the best fits in comparing models with the same number of parameters. Based on the restricted likelihood function, Akaike's information criterion, and consistent Akaike's information criterion, the B-splines model with six intervals described the growth trajectory of evaluated animals more smoothly and consistently. In the study of allometric growth, the evaluated traits exhibited negative heterogeneity (b<1) relative to the animals' weight (p<0.01), indicating the precocity of Guzerat cattle for weight gain on pasture. Conclusion: Complementary studies of growth trajectory and allometry can help identify when an animal's weight changes and thus assist in decision-making regarding management practices, nutritional requirements, and genetic selection strategies to optimize growth and animal performance.

The Study of Prediction Model of Gas Accidents Using Time Series Analysis (시계열 분석을 이용한 가스사고 발생 예측 연구)

  • Lee, Su-Kyung;Hur, Young-Taeg;Shin, Dong-Il;Song, Dong-Woo;Kim, Ki-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • In this study, the number of gas accidents prediction model was suggested by analyzing the gas accidents occurred in Korea. In order to predict the number of gas accidents, simple moving average method (3, 4, 5 period), weighted average method and exponential smoothing method were applied. Study results of the sum of mean-square error acquired by the models of moving average method for 4 periods and weighted moving average method showed the highest value of 44.4 and 43 respectively. By developing the number of gas accidents prediction model, it could be actively utilized for gas accident prevention activities.

Spatial Estimation of the Site Index for Pinus densiplora using Kriging (크리깅을 이용한 소나무림 지위지수 공간분포 추정)

  • Kim, Kyoung-Min;Park, Key-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.467-476
    • /
    • 2013
  • Site index information given from forest site map only exist in the sampled locations. In this study, site index for unsampled locations were estimated using kriging interpolation method which can interpolate values between point samples to generate a continuous surface. Site index of Pinus densiplora in Danyang area were calculated using Chapman-Richards model by plot unit. Then site index for unsampled locations were interpolated by theoretical variogram models and ordinary kriging. Also in order to assess parameter selection, cross-validation was performed by calculating mean error (ME), average standard error (ASE) and root mean square error (RMSE). In result, gaussian model was excluded because of the biggest relative nugget (37.40%). Then spherical model (16.80%) and exponential model (8.77%) were selected. Site index estimates of Pinus densiplora throughout the entire area in Danyang showed 4.39~19.53 based on exponential model, and 4.54~19.23 based on spherical model. By cross-validation, RMSE had almost no difference. But ME and ASE from spherical model were slightly lower than exponential model. Therefore site index prediction map from spherical model were finally selected. Average site index from site prediction map was 10.78. It can be expected that regional variance can be considered by site index prediction map in order to estimate forest biomass which has big spatial variance and eventually it is helpful to improve an accuracy of forest carbon estimation.

Simultaneous Adjustment of Geodetic Networks by Geographical Coordinates φ, λ (경위도(經緯度) 좌표(座標) φ, λ에 의한 측지망(測地網)의 동시조정(同時調整))

  • Baick, Eun Kee;Lee, Young Jin;Choi, Yun Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.121-127
    • /
    • 1985
  • This paper deals with simultaneous geodetic networks adjustment by geographical coordinates(${\varphi}$, ${\lambda}$). The adjustment computation is performed by variation of coordinates, and the classical method with fixed points and free networks are also compared. Provisional values for observation equations are computed by extended Gauss-mid lattitude formula using existing official coordinates. Bessel ellipsoid and unit weight are adopted. The processing of a test-network by distances yields the average root mean square error of position 6.2 cm for classical method and 2.4cm for free networks. The standard error of unit weight in a test-network is $1.66{\times}10^{-6}$ radian (0.3"), and the analysis of error ellipses shows that free networks are more normally distributed errors.

  • PDF

Selective Attentive Learning for Fast Speaker Adaptation in Multilayer Perceptron (다층 퍼셉트론에서의 빠른 화자 적응을 위한 선택적 주의 학습)

  • 김인철;진성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.48-53
    • /
    • 2001
  • In this paper, selectively attentive learning method has been proposed to improve the learning speed of multilayer Perceptron based on the error backpropagation algorithm. Three attention criterions are introduced to effectively determine which set of input patterns is or which portion of network is attended to for effective learning. Such criterions are based on the mean square error function of the output layer and class-selective relevance of the hidden nodes. The acceleration of learning time is achieved by lowering the computational cost per iteration. Effectiveness of the proposed method is demonstrated in a speaker adaptation task of isolated word recognition system. The experimental results show that the proposed selective attention technique can reduce the learning time more than 60% in an average sense.

  • PDF

Sea Level Rise at the Southwestern Coast of Korean Peninsula

  • Oh Nam-Sun;Kang Ju-Whan;Moon Seung-Rok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • Sea level (MSL, MHWL, or MLWL) change has been main concern to scientists and engineers and it can be primarily due to both change of climate and vertical movement of land. This paper reports the intensive analysis of the sea level changes and broad discussion of the future at the southwestern coast of Korean peninsula. Regression analysis was conducted to investigate general tendency and periodicity of the sea levels at the six different study sites such as Gunsan-I(inner port), Gunsan-O(outer port), Mokpo, Yeosu, Heuksan and Jeju and the results were compared with global values. Besides the changes of sea levels due to global warming, the influence of the man-made structure such as seadike and seawall was attempted to quantify using the minimization of the Root Mean Square(RMS) error. The results show that it is a general tendency that the values of mean sea level rise at the southwestern coast of Korean Peninsula, especially at Gunsan-I and Jeju, are somewhat larger compared to global average values. There is also some evidence that tidal amplifications are found just after construction of man-made structure at Gunsan-I and Mokpo. However, both sites show different mechanism in relation to tidal choking, tidal flat and river discharge. The impact due to construction of man-made structure is considerably larger at Mokpo site, while the impacts due to man-made structure and the effect of sea level rise are relatively identical at Gunsan-I site. This study is expected to provide some intuition to future design.

A Study on Predicting TDI(Trophic Diatom Index) in tributaries of Han river basin using Correlation-based Feature Selection technique and Random Forest algorithm (Correlation-based Feature Selection 기법과 Random Forest 알고리즘을 이용한 한강유역 지류의 TDI 예측 연구)

  • Kim, Minkyu;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.432-438
    • /
    • 2019
  • The purpose of this study is to predict Trophic Diatom Index (TDI) in tributaries of the Han River watershed using the random forest algorithm. The one year (2017) and supplied aquatic ecology health data were used. The data includes water quality(BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, water temperature, DO, pH, conductivity, turbidity), hydraulic factors(water width, average water depth, average velocity of water), and TDI score. Seven factors including water temperature, BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, and average water depth are selected by the Correlation Feature Selection. A TDI prediction model was generated by random forest using the seven factors. To evaluate this model, 2017 data set was used first. As a result of the evaluation, $R^2$, % Difference, NSE(Nash-Sutcliffe Efficiency), RMSE(Root Mean Square Error) and accuracy rate show that this model is compatible with predicting TDI. To be more concrete, $R^2$ is 0.93, % Difference is -0.37, NSE is 0.89, RMSE is 8.22 and accuracy rate is 70.4%. Also, additional evaluation using data set more than 17 times the measured point was performed. The results were similar when the 2017 data set were used. The Wilcoxon Signed Ranks Test shows there was no statistically significant difference between actual and predicted data for the 2017 data set. These results can specify the elements which probably affect aquatic ecology health. Also, these will provide direction relative to water quality management for a watershed that must be continuously preserved.