• Title/Summary/Keyword: Average hourly traffic

Search Result 25, Processing Time 0.018 seconds

Estimating Annual Average Daily Traffic Using Hourly Traffic Pattern and Grouping in National Highway (일반국도 그룹핑과 시간 교통량 추이를 이용한 연평균 일교통량 추정)

  • Ha, Jung-Ah;Oh, Sei-Chang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.10-20
    • /
    • 2012
  • This study shows how to estimate AADT(Annual Average Daily Traffic) on temporary count data using new grouping method. This study deals with clustering permanent traffic counts using monthly adjustment factor, daily adjustment factor and a percentage of hourly volume. This study uses a percentage of hourly volume comparing with other studies. Cluster analysis is used and 5 groups is suitable. First, make average of monthly adjustment factor, average of daily adjustment factor, a percentage of hourly volume for each group. Next estimate AADT using 24 hour volume(not holiday) and two adjustment factors. Goodness of fit test is used to find what groups are applicable. MAPE(Mean Absolute Percentage Error) is 8.7% in this method. It is under 1.5% comparing with other method(using adjustment factors in same section). This method is better than other studies because it can apply all temporary counts data.

A Study on Estimate Model for Peak Time Congestion

  • Kim, Deug-Bong;Yoo, Sang-Lok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.285-291
    • /
    • 2014
  • This study applied regression analysis to evaluate the impact of hourly average congestion calculated by bumper model in the congested area of each passage of each port on the peak time congestion, to suggest the model formula that can predict the peak time congestion. This study conducted regression analysis of hourly average congestion and peak time congestion based on the AIS survey study of 20 ports in Korea. As a result of analysis, it was found that the hourly average congestion has a significant impact on the peak time congestion and the prediction model formula was derived. This formula($C_p=4.457C_a+29.202$) can be used to calculate the peak time congestion based on the predicted hourly average congestion.

Directional Design Hourly Volume Estimation Model for National Highways (일반국도의 중방향 설계시간 교통량 추정 모형)

  • Lim, Sung-Han;Ryu, Seung-Ki;Byun, Sang-Cheol;Moon, Hak-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2012
  • Estimating directional design hourly volume (DDHV) is an important aspect of traffic or road engineering practice. DDHV on highway without permanent traffic counters (PTCs) is usually determined by the annual average daily traffic (AADT) being multiplied by the ratio of DHV to AADT (K factor) and the directional split ratio (D factor) recommended by Korea highway capacity manual (KHCM). However, about the validity of this method has not been clearly proven. The main intent of this study is to develop more accurate and efficient DDHV estimation models for national highway in Korea. DDHV characteristics are investigated using the data from permanent traffic counters (PTCs) on national highways in Korea. A linear relationship between DDHV and AADT was identified. So DDHV estimation models using AADT were developed. The results show that the proposed models outperform the KHCM method with the mean absolute percentage errors (MAPE).

A Study on Evaluation of Marine Traffic Congestion based on Survey Research in Major Port (주요항만의 실측조사 기반 해상교통혼잡도 평가 연구)

  • Yoo, Sang-Rok;Jeong, Cho-Young;Kim, Chol-Seong;Park, Sung-Hyun;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.483-490
    • /
    • 2013
  • In this study, we analyzed AIS measured data for ten days by selecting the four main ports with many ships arriving in the national ports. The peak time congestion of the main ports, calculated by survey research, was about 3.8-5.7 times higher than the hourly average congestion. This is very different from the results of the advanced research, evaluating the marine traffic congestion of the Ulsan main port based on the existing Port-MIS statistical data, which showed a peak time congestion of about 1.7 times higher than the hourly average. This identifies the problem of distorting the traffic characteristics of the current passage. Therefore, in order to evaluate marine traffic congestion, it would be more appropriate to calculate it based on survey research, rather than Port-MIS statistical data.

Development of Time-based Safety Performance Function for Freeways (세부 집계단위별 교통 특성을 반영한 고속도로 안전성능함수 개발)

  • Kang, Kawon;Park, Juneyoung;Lee, Kiyoung;Park, Joonggyu;Song, Changjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.203-213
    • /
    • 2021
  • A vehicle crash occurs due to various factors such as the geometry of the road section, traffic, and driver characteristics. A safety performance function has been used in many studies to estimate the relationship between vehicle crash and road factors statistically. And depends on the purpose of the analysis, various characteristic variables have been used. And various characteristic variables have been used in the studies depending on the purpose of analysis. The existing domestic studies generally reflect the average characteristics of the sections by quantifying the traffic volume in macro aggregate units such as the ADT, but this has a limitation that it cannot reflect the real-time changing traffic characteristics. Therefore, the need for research on effective aggregation units that can flexibly reflect the characteristics of the traffic environment arises. In this paper, we develop a safety performance function that can reflect the traffic characteristics in detail with an aggregate unit for one hour in addition to the daily model used in the previous studies. As part of the present study, we also perform a comparison and evaluation between models. The safety performance function for daily and hourly units is developed using a negative binomial regression model with the number of accidents as a dependent variable. In addition, the optimal negative binomial regression model for each of the hourly and daily models was selected, and their prediction performances were compared. The model and evaluation results presented in this paper can be used to determine the risk factors for accidents in the highway section considering the dynamic characteristics. In addition, the model and evaluation results can also be used as the basis for evaluating the availability and transferability of the hourly model.

Analysis on Time Dependent Traffic Volume Characteristics on Highways linked to Recreation Areas (관광지 종류별 일반국도 교통량의 시간별 특성 연구)

  • Kim, Yun Seob;Oh, Ju Sam;Kim, Hyun Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.23-30
    • /
    • 2006
  • The variation in the traffic volume on any given roads is the reflection of its user's economic activities and life patterns. And traffic volume flows in every hour usually take different charateristics depending on the location and the function of the roads. This study produced the Monthly Adjustment Factor, Weekly Adjustment Factor and Design hourly Factor, each of which is the index indicating the traffic volume charaterirstics on the highways leading to the recreation areas in the mountainous and seaside tourist sites. Applying these results, it might be possible to calculate the optimal AADT (Annual Average Daily Traffic) and DHV (Design Hour Volume), also be a help to establish a traffic management policy. Finally, it hopes to promote new version of KHCM (Korea Highway Capacity Manual) which includes traffic volume characteristics on recreation areas.

A Study on Characteristic Design Hourly Factor by Road Type for National Highways (일반국도 도로유형별 설계시간계수 특성에 관한 연구)

  • Ha, Jung-Ah
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.52-62
    • /
    • 2013
  • Design Hourly Factor(DHF) is defined as the ratio of design hourly volume(DHV) to Average Annual Daily Traffic(AADT). Generally DHV used the 30th rank hourly volume. But this case DHV is affected by holiday volumes so the road is at risk for overdesigning. Computing K factor is available for counting 8,760 hour traffic volume, but it is impossible except permanent traffic counts. This study applied three method to make DHF, using 30th rank hourly volume to make DHF(method 1), using peak hour volume to make DHF(method 2). Another way to make DHF, rank hourly volumes ordered descending connect a curve smoothly to find the point which changes drastic(method 3). That point is design hour, thus design hourly factor is able to be computed. In addition road classified 3 type for national highway using factor analysis and cluster analysis, so we can analyze the characteristic of DHF by road type. DHF which was used method 1 is the largest at any other method. There is no difference in DHF by road type at method 2. This result shows for this reason because peak hour is hard to describe the characteristic of hourly volume change. DHF which was used method 3 is similar to HCM except recreation road but 118th rank hourly volume is appropriate.

Traffic Measurement Using Moving Vehicle Method Using CCTV (CCTV를 활용한 주행차량 조사법에 의한 교통량 측정)

  • Shin, Seong-Yoon;Kim, Chang-Ho;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.214-215
    • /
    • 2013
  • The main criteria for objective measure of the level of transportation service is travel time and delay time. In this paper, the level of service is measured by using moving vehicles method. Through this, we get the hourly traffic volume, the average travel time, space average speed, etc. In addition, we get the density of traffic.

  • PDF

Design Hourly Factor Estimation with Vehicle Detection System (차량검지기자료를 이용한 고속도로 설계시간계수 산정 연구)

  • Baek, Seung-Geol;Kim, Beom-Jin;Lee, Jeong-Hui;Son, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.79-88
    • /
    • 2007
  • Design Hourly Volume (DHV) is the hourly volume used for designing a section of road. DHV is also used to estimate the expected number of vehicles to pass or traverse the relevant section of road in a future target year. The Design Hour Factor (DHF) is defined as the ratio of DHV to Average Annual Daily Traffic (AADT). In addition to high precision of predicted traffic volume, in order to design a roadway to be the proper scale, applying appropriate DHFs considering traffic flow characteristics and type of area which surrounds the relevant roadway is important. This study categorizes sections of expressway (Suh Hae An Expressway) according to their area type and estimates DHFs utilizing traffic data obtained from a vehicle detection system (VDS). This study shows that DHFs calculated using VDS data are different from those using traffic data acquired from a coverage survey. While AADTs from both data show similar values, peak hour volumes from both data show significant differences especially for recreational areas. DHFs from the coverage survey are quite different from the values provided by the Korean design guide or previous research results and DHFs for urban areas are higher than recreational areas. However, DHFs from VDS shows similar values to previous research results. The result of this study suggests that using VDS for estimating DHFs is more reliable than using a coverage survey.

Social Cost Comparison of Air-Quality based on Various Traffic Assignment Frameworks (교통량 배정 방법에 따른 대기질의 사회적 비용 비교분석)

  • Lee, Kyu Jin;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1087-1094
    • /
    • 2013
  • This study aims at enhancing the objective estimation of social cost of air quality due to mobile emission. More specifically, it examines the difference between the daily oriented and hourly oriented estimation results of social air quality cost and draws implications from the comparative analysis. The result indicates that the social cost of air quality differs up to approximately 24 times depending on the analysis time period. Moneywise, the difference between daily and hourly assignments amounts to the average of 653.5 billion won whereas only 1% of error occurred in the estimation result based on peak and nonpeak based hourly assignment. This study reaffirms the need for time-based travel demand management for emission reduction, and confirms the feasibility of emission estimation by travel demand forecasting method over the conventional method employed by the CAPSS.