According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.
We present X-tree Diff, a change detection algorithm for tree-structured data. Our work is motivated by need to monitor massive volume of web documents and detect suspicious changes, called defacement attack on web sites. From this context, our algorithm should be very efficient in speed and use of memory space. X-tree Diff uses a special ordered labeled tree, X-tree, to represent XML/HTML documents. X-tree nodes have a special field, tMD, which stores a 128-bit hash value representing the structure and data of subtrees, so match identical subtrees form the old and new versions. During this process, X-tree Diff uses the Rule of Delaying Ambiguous Matchings, implying that it perform exact matching where a node in the old version has one-to one corrspondence with the corresponding node in the new, by delaying all the others. It drastically reduces the possibility of wrong matchings. X-tree Diff propagates such exact matchings upwards in Step 2, and obtain more matchings downwsards from roots in Step 3. In step 4, nodes to ve inserted or deleted are decided, We aldo show thst X-tree Diff runs on O(n), woere n is the number of noses in X-trees, in worst case as well as in average case, This result is even better than that of BULD Diff algorithm, which is O(n log(n)) in worst case, We experimented X-tree Diff on reat data, which are about 11,000 home pages from about 20 wev sites, instead of synthetic documets manipulated for experimented for ex[erimentation. Currently, X-treeDiff algorithm is being used in a commeercial hacking detection system, called the WIDS(Web-Document Intrusion Detection System), which is to find changes occured in registered websites, and report suspicious changes to users.
The exact estimation of crop evapotranspiration containing reference or potential evapotranspiration is necessary for decision of crop water requirements. This study was carried out for the evaluation and application of various meteorological elements used for the calculation of reference evapotranspiration (RET) by FAO Penman-Monteith (PM) model. Meteorological elements including temperature, net radiation, soil heat flux, albedo, relative humidity, wind speed measured by meteorological instruments are required for RET calculation by FAO PM model. The average of albedo measured for crop growing period was 0.20, ranging from 0.12 to 0.23, and was slightly lower than 0.23. Determinant coefficients by measured albedo and green grass albedo were 0.97, 0.95 and standard errors were 0.74, 0.80 respectively. Usefulness of deductive regression models was admitted. To assess an influence of soil heat flux (G) on FAO PM, RET with G=0 was compared with RETs using G at 5cm soil depth ($G_{5cm}$) and G at surface ($G_{0cm}$). As the results, RET estimated by G=0 was well agreed with RET calculated by measured G. Therefore, estimated net radiation, G=0 and albedo of green grass could be used for RET calculation by FAO PM.
The objective of this study was to manufacture spent layer chicken meat products by natural freeze-drying. The spent layers of chickens that were slaughtered at 80 wk were obtained from a local slaughter house and separated into two halves of carcasses. The samples were divided into the following groups: 1) control (non-curing), 2) curing, and 3) curing with 2% trehalose before drying. The cured meats were placed at $2^{\circ}C$ for 7 d and then transferred to a natural drying spot located in Injae City, Gangwondo, Korea. The experiment was conducted from January to March in 2008. The average temperature, RH, and wind speed were $-1.5^{\circ}C$, 63%, and 1.8 m/sec, respectively. The cured treatments showed higher pH, lower Aw and lower shear force value compared with the control. Based on the results of TBARS (2-thiobarbituric acid reactive substances) level and volatile basic nitrogen value, lipid oxidation and protein deterioration were inhibited in curing treatments during drying. Trehalose acted as a humectant because it maintained a lower water activity despite the relatively higher moisture content during drying. The polyunsaturated fatty acids content and sensory attributes were higher in cured treatments than in the control during drying. Most of the bacterial counts in the treated groups were lower by 2 Log CFU/g after 1 mon of drying, and Salmonella spp. and Listeria spp. were not found in any treatment. There was also no microbial safety problem associated with dried meat products. Based on the results of this experiment, dried meat products could be manufactured from precured spent layer chickens by natural freeze-drying during winter.
This study was conducted to select superior families based on the open-pollinated (OP) progeny tests of P. densiflora. A total of 232 OP families were analyzed for relative height growth. The OP progeny test trials were established at 1 to 4 sites from 1975 to 1987. To minimize temporal and spatial variation, we applied the standardization method for family selection. In each progeny test, superior and inferior families were selected at ages of 10, 20 and 30. Relative height growth rate (RHGR), growth speed at a given time unit, was comparatively high at age of 10 with range from 0.1 to 0.6 and showed a large variation among families. However, after age 15, the RHGR was low (average 0.04) and also the variation was not significantly different among families. To reduce selection errors due to age differences (from age 23 to 35) of tests, we made the family selection after age 15 when the values of RHGR were stable. Height growth at each age was transformed to be height growth at age 35 based on the RHGR. As the results, family CB2, CB3, KW99 and KW2 were selected as superior families and KW158, KW22, KB40 and GG1 were considered as inferior ones, respectively. Rank correlations (r) between test ages and selection age 35 were high and statistically significant; r = 0.881 between age 30 and 35, 0.653 between age 20 and 35, and -0.222 between age 10 and 35.
A new malting barley variety, "Daho", was developed from the cross between "Milyang85 and Suwon335" at the Department of Rice and Winter Cereal Crop (DRWCC) NICS, in 2007. An elite line, YMB2064-B-8-2-4-1-1, was selected in 2004 and designated as "Milyang134". It showed good agronomic performance in the regional adaptation yield trials (RYT) from 2005 to 2007 and was released with the name of "Daho", having high yielding and BaYMV resistance. The average heading and maturing dates of "Daho" were April 19 and May 27, which were 2 days later and 1 day earlier than those of "Jinyang", leading variety, at the regional adaptation yield trials (RYT), respectively. "Daho" had longer culm length (84 cm), more spikes per $m^2$ (915) and higher 1,000 grain weight (39.2 g) than those of "Jinyang" in paddy field condition. "Daho" was showed resistance to BaYMV at the regions of Naju, Jinju, and Milyang but moderately resistance at Iksan. However, the response of "Daho" to other environmental stresses was similar to "Jinyang". The yields of "Daho" at upland and paddy fields were about 5.20 MT/ha, 4.81 MT/ha, respectively, which is about 38%, 25% higher than those of "Jinyang" in the regional adaptation yield trials (RYT), respectively. It has higher grain assortment, germination capacity, water sensitivity and Kolback index but lower malt extract, diastatic power and filtration speed than those of "Jinyang".
A new malting barley variety, "Oreum", was developed from the a cross between 'Kinuyutaka' and 'Samdobori' at the Honam Agricultural Research Institute (HARI) in 2006. An elite line, YMB2077-2B-24-1-2, was selected in 2003 and designated as 'Milyang132'. It showed good agronomic performance in the regional adaptation yield trials (RYT) from 2004 to 2006, and was released with the name of "Oreum" having high yielding and BaYMV resistance. The average heading and maturing dates of "Oreum" were April 18 and May 24, which were 2 days later than 'Jinyang', a leading variety, at RYT. "Oreum" had longer culm length (75 cm), more spikes per $m^2$ (990), and lighter 1,000 grain weight (35.2 g) than those of 'Jinyang' in paddy field conditions. It was showed resistance to BaYMV at the regions of Naju, Jinju and Milyang but moderate resistance at Iksan. However, the response to other environmental stresses of was similar to 'Jinyang' The yield potential of "Oreum" was about 5.43 MT/ha, 4.93 MT/ha in upland and paddy fields which was about 80%, 35% higher than Jinyang in the regional adaptation yield trials (RYT), respectively. It has good malting quality including high grain assortment, germination capacity ratio, water sensitivity and high the malt production and the extract and short filtration speed than those of 'Jinyang'.
Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
Journal of The Korean Society of Agricultural Engineers
/
v.61
no.6
/
pp.111-121
/
2019
Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.
Kim, Da-Yoon;Cho, Yong-Hyeon;Son, In-Ki;Kim, Yoon-Ho
Journal of the Korean Institute of Landscape Architecture
/
v.49
no.5
/
pp.71-78
/
2021
Green areas and the area of available horizontal surfaces are gradually decreasing due to the overcrowding of buildings. It is adversely affecting the urban climate and ecosystem. However, the recognition of the importance of green areas is gradually increasing. As a result, the importance of wall greening using vertical surfaces is growing. However, despite the fact that domestic wall greening guidelines and institutions related to orientations restrict planting. there was no study to determine whether there were actual differences in plant growth due to orientations. Therefore, this study compared and analyzed the plant growth characteristics by orientations to apply actual wall greening to cities. The experiment was conducted from May to September 2020. First of all, three octave walls were constructed to measure the temperature, the illumination, and the length of the plants once a week. The plants included Parthenocissus tricuspidata, Hedera rhombea, and Euonymus radicans cv. Aueonmarinata Rehd plants. As a result of the study, Parthenocissus tricuspidata was prolific in the north, and Hedera rhombea, and Euonymus radicans cv. Aueonmarinata Rehd plants were prolific in the south. All three types of plants were prolific in June-July, and the Parthenocissus tricuspidata was prolific in grass-growing, and in August, all the walls were 100% covered. Hedera rhombea had the lowest rate of herbaceous growth, and the vertical coverate was also lower at an average of 45%, but among the three plants, the sheath of the horizontal surface coverate was the highest. Euonymus radicans cv. Aueonmarinata Rehd was low in the speed of herbaceous growth, and finally, the walls were 100% covered except for the north and northwest directions. It was found that not all plants used for wall greening show the same growth, and the difference in growth varies more depending on plants than the effect of orientations. Therefore, it is better to identify the characteristics of plant growth and plant suitable plants for each directions.
Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
Journal of Intelligence and Information Systems
/
v.29
no.1
/
pp.249-263
/
2023
Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.