• 제목/요약/키워드: Average Nusselt number

검색결과 113건 처리시간 0.027초

원형 다공배플이 있는 덕트에서의 열전달과 마찰계수에 관한 수치해석 (Numerical analysis of heat transfer and friction factors in a duct having circular perforated baffles)

  • 오세경;안수환;;배성택
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.44-50
    • /
    • 2012
  • The present numerical study was performed to determine how the two perforated baffles( Inclined angle=$5^{\circ}$; perforation diameter=2cm) placed at a rectangular duct affect heat transfer and associated friction factors. The parametric effects of perforated baffles(3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,000 on the heated target surface are explored. As for the investigation of heat transfer behaviours on the local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=0.8$ of the edge baffles, it is evident that the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles. The numerical results by commercial code CFX 10.0 are confirmed with the experimental data.

저온의 물속에 잠겨있는 수평 평면에 의하여 야기되는 자연대류의 수치해석 (Numerical Analysis of Natural Convection from a Horizontal Surface Immersed in Cold Water)

  • 유갑종;예용택;권혁용
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1195-1204
    • /
    • 1992
  • 본 연구에서는 등온 평면의 온도가 0.0.deg. C부터 8.0.deg. C까지, 그리고 주위물의 온 도가 1.0.deg. C부터 10.0.deg. C까지 일 대 상향 및 하향면 주위에서 일어나는 자연대류를 유한 차분법(FDM)으로 수치해석하여 등온면 주위에서 일어나는 유동형태, 속도분포, 평균 Nusselt수를 구하여 유동 및 열전달특성을 구명하였다.

저온의 순수물속에 잠겨있는 약간 경사진 균일 열유속 원기등에 의한 자연대류의 실험적 연구 (Experimental Study of Natural Convection from a Slightly Inclined Cylinder with Uniform Heat Flux Immersed in Cold Pure Water)

  • 유갑종;추홍록;장우석
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1799-1807
    • /
    • 1994
  • Natural convection from a slightly inclined circular cylinders immersed in quiescent cold pure water was studied experimentally. The experiment was carried out for circular cylinders with uniform heat flux ranging from $100W/m^{2} to 800 W/m^{2}$ and inclined angle ranging from horizontal $({\phi}=0^{\circ}) to 15^{\circ}$. The flow fields around cylinder were visualized and heat transfer characteristics investigated by measuring the surface temperatures for each case. As the results, it is shown that flow patterns are changed consecutively through the sequence of steady state downflow, unsteady state flow and steady state upflow with increasing heat flux. At the same inclined angle, as heat flux increases, the average Nusselt number decreases and then increases. At the same heat flux, as inclined angle increases, the average Nusselt number decreases.

Pressure Loss and Enhancement of Heat Transfer in an Annulus Filled with Aluminum Foam

  • Noh, Joo-Suk;Han, Young-Hee;Lee, Kye-Bock;Lee, Chung-Gu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.17-24
    • /
    • 2007
  • An experimental investigation was carried out for 4 different types of the aluminum foam heat sinks which were inserted into the annulus. The purpose of this study is to examine the feasibility of a heat sink with high performance forced convective water cooling in the annulus. The local wall temperature distribution, inlet and outlet pressures and temperatures, and heat transfer coefficients were measured for heat flux of 13.6, 18.9, 25.1, 31.4 $kW/m^2$ and Reynolds number ranged from 120 to 9,000. Experimental results show that the departure from the Darcy's law is evident from the pressure loss and the friction factor is much higher while the significant enhancement in Nusselt number is obtained, and average Nusselt number of aluminum foam with high pore density is much higher than that of aluminum foam with low pore density. Correlations for the friction factor is proposed and used for design of thermal applications.

격판을 가진 수평환상공간에서의 자연대류 열전달 (Natural Convection Heat Transfer from a Horizontal Annulus with Spacers)

  • 이범철;정한식;권순석
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.153-160
    • /
    • 1989
  • 본 연구는 수평전도관과 수평원통 사이의 환상공간에 수직격판이 부착된 경우와 수평직판이 부착된 경우에 Rayleigh수와 무차원 관열전도율을 변수로하여 수직해석과 Mach-Mehnder 간섭계를 이용한 실험으로 자연대류 열전달특성을 연구 하였다.

1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제1보, 노즐형상의 영향) (Impingement heat transfer within 1 row of circular water jets : Part 1-Effects of nozzle configuration)

  • 엄기찬;김상필
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.50-58
    • /
    • 2000
  • Experiments were carried out to obtain the effects of nozzle configuration and jet to jet spacing on the heat transfer characteristics of single line of circular water jets impinging on a constant heat flux plane surface. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type, and the nozzle arrays are single jet(nozzle dia. 8 mm), 1 row of 3 jets and 1 row of 5 jets. Jet velocities ranging from 3m/s to 8m/s were investigated for the nozzle to target plate spacing of 80 mm. For the Cone and Reverse cone type nozzle arrays, the average Nusselt number of 1 row of 5 jets was larger than that of 1 row of 3 jets at Re$_{D}$<45000, but that of 1 row of 3 jets was larger than that of 1 row of 5 jets at $Reo\le45000$. For the Vertical circular type nozzle, however, the average Nusselt number of 1 row of 3 jets was larger than that of 1 row of 5 jets at all jet velocities. In the condition of fixed mass flow rates, the maximum heat transfer augmentation was obtained for 1 row of 5 jets and was over 2 times larger than that of the single jet for all nozzle configurations. The nozzle configurations that produce the maximum average Nusselt number are as follows: For 1 row of 3 jets, the Vertical circular type at $Reo\le45000$ and the Reverse cone type at $Reo\le45000$. But, they are the Reverse cone type at Re$_{D}$<55000 and the Vertical circular type at$Reo\le55000$ for 1 row of 5 jets.

  • PDF

The Effect of Non-condensable Gas on Direct Contact Condensation of Steam/Air Mixture

  • Lee, Hanchoon;Kim, Moohwan;Park, Suki
    • Nuclear Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.585-595
    • /
    • 2001
  • A series of experiments have been carried out to investigate the effects of non-condensable gas on the direct contact film condensation of vapor mixture under an adiabatic wall condition. The average heat transfer coefficient of the direct contact condensation was obtained at the atmospheric pressure with four main parameters ; air-mass fraction, mixture velocity, film Reynolds number, and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis of 88 experiments, a correlation of the average Nusselt number for direct contact film condensation of steam/air mixture at an adiabatic vertical wall was proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam/air mixture condensation decreased significantly while air mass fraction increased. The average heat transfer coefficients also decreased as the Jacob number increased, and were scarcely affected by the film Reynolds number below a mixture Reynolds number of about 245,000.

  • PDF

삽입물에 의한 관내 층류열전달 증진에 관한 실험적 연구 (An Experimental Study on Enhancement of Laminar Flow Heat Transfer in a Circular Pipe with Inserts)

  • 권영철;장근선;정지환
    • 설비공학논문집
    • /
    • 제12권7호
    • /
    • pp.667-673
    • /
    • 2000
  • In order to understand the laminar flow heat transfer enhancement by the swirl flow, the effects of heat transfer in a circular pipe with a twisted tape insert were investigated experimentally. In the present study, the uniform heat flux condition was considered. The laminar heat transfer correlations were developed using the least-square-fit from the surface temperature distribution of an electrically-heated pipe and flow property data. Average Nusselt number correlations with the twisted tape insert were expressed as a function of swirl parameter, Reynolds number and Prandtl number. In the case of the twisted ratio y = 6.05, the mean Nusselt number increased approximately 500% and the friction factor increased approximately 300%, compared to the case of the empty pipe, respectively.

  • PDF

Study on Laminar Heat Transfer Enhancement by Twisted-Inserts

  • Kwon, Young-Chel;Chang, Keun-Sun;Jeong, Ji-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.36-43
    • /
    • 2001
  • In order to understand the laminar heat transfer enhancement by swirl flow, the effects of heat transfer in a circular pipe with twisted inserts are investigated experimentally. In the present study, a uniform heat flux condition is considered. Laminar heat transfer correlations are developed using least square fit method from surface temperature distributions of an electrically-heated pipe and flow properties. Average Nusselt number correlations with twisted inserts are expressed as a function of swirl parameter, Reynolds number and prand시 number. When the twisted ratio is 6.50, mean Nusselt number and friction factor increase by approximately 500% and 300%, respectively, compared with the values for a pipe without inserts.

  • PDF

표면조도를 가지는 오목한 면에 충돌하는 원형제트에 의한 열전달 측정 (Heat Transfer Measurement by a Round Jet Impinging on a Rib-Roughened Concave Surface)

  • 이대희;원세열;이준식
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.734-743
    • /
    • 1999
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the concave surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 4 to 10, the dimensionless surface curvature (d/D) 0.056, and the rib type (height ($d_1$) 0.2 cm, pitch (p) from 1.2 to 3.2 cm). It was founded that only when $L/d{\geq}6$, the average Nusselt numbers on the concave surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by the effect of rib attached to the wall surface. It was realized that the rib attached to the concave surface may no longer enhance the heat transfer rate or even lowers it depending on the rib type and flow conditions. In addition, the results by the steady-state method using the gold-film Intrex were in good agreement with those by the transient shroud method.