• Title/Summary/Keyword: Average Grain Diameter

Search Result 71, Processing Time 0.029 seconds

Studies on the Cropping system of the Field Crop in Chungnam Area (충남지방(忠南地方)의 전작물(田作物) 작부체계확립(作付體系確立)에 관(關)한 연구(硏究))

  • Choi, Chang Yeol;Kim, Dal Ung;Lee, Jae Chang;Kim, Young Rae
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.39-51
    • /
    • 1976
  • As an accempt to increase thc efficiency of land use and the food production to achieve the national goal in the food self-sufficiency, nine cropping systems on the upper-land were examined in pure-stand and in mixtures of soybean, corn, potato and radish. The important conclusions of this study were summarized as follows; 1. The flowering date of soybean was two or three days earlier in pure-stand than in the mixture with corn. The maturing date two days earlier in the pure-stand than in the mixture with corn. The flowering and maturing dates were not different among various cropping systems in corn. 2. The stem length of soybean was significantly different among various cropping systems. Soybean in pure-stand was shorter in stem length than with corn. 3. The number of pods per soybean plant did not give any significant differences among various cultivation methods. 4. The length of internode and the number of nodes per soybean plant in the mixture with corn were greater than in the pure-stand. In the number of branches per plant this was reversed. 5. The average stem dry weight of soybean per 10a was not significantly different among various cultivation methods. 6. The soybean yield per 10a in the pure-stand was obviously greater than the mixture and there were significant differences among cultivation method within the mixture with corn in soybean yield. 7. The 1,000-grain weight of soybean was significantly different and those in the pure-stand was heavier than those in the mixture with corn. 8. Grain weight per soybean plant and the stem diameter in the pure-stand were significantly lesser than those in the mixture with corn. 9. In the comparisons of corn in the pure-stand and in the mixture with soybean, plant height, number of ear per 10a, mean ear weight and remember of grain per plant, 100-grain weight, ear length, ear girth and number of ear pel plant were not significantly different among various cultivation methods except for the grain yield per 10a. 10. In the economic analysis, the mixture with soybean and corn gave the greatest gross income. The combination 7 was the best which was 47.6% increase income comparing with the soybean pure-stand. 11. As it can be assumed, soybean plant was influenced greatly than corn by various cropping system. It is necessary to study more complex cropping system finding and giving more desirable multiple cropping system for the farmer.

  • PDF

Effects of Post Individualities on Treatability of Small Diameter Japanese Larch (Larix Leptolepis) with ACQ and CCA (낙엽송 원주상 소경목의 원목성상과 방부 처리성)

  • Kim, Yeong-Suk;Hong, Soon-Il;Yun, Jeong-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.52-60
    • /
    • 2006
  • This study investigated how wood properties (i.e., annual rings, sapwood, heartwood, and cracks) might affect preservative treatment in Japanese larch (Larix leptolepis) round-wood product. We specially focused on small-diameter (~10 cm diameter) wood that is commercially sold in market. Among 100 wood samples, the groups of sample with 13~16, 17~20 annual rings represented 33 and 27 in each frequency, while 2~3 and 4~5 mm annual ring width accounted for 72 and 68 in frequency. More than a half (54%) of wood samples contained a mix of heartwood and sapwood in its surface. The rest (46%) had only heartwood exposed in the wood surface. A wide range of checks were showed in the wood samples, but the highest frequency was observed in samples with 1~6 surface (1~14 mm in size) checks and 1~4 end-grain (8~14 mm in size) checks in each round-wood sample. Pressure treatment resulted in a wide range of penetration of ACQ (Alkaline Copper Quat) into the wood, showing $4.3{\pm}4.19mm$ penetration in the wood samples contained a mix of heartwood and sapwood in its surface. However preservative treatment was much less effective for the heartwood only wood samples, ranging average 1.3 mm with ACQ and 1.1 mm with CCA (Chromated Copper Arsenate). These penetration results shown in heartwood samples did not meet the penetration standard that is required for H3 by the Korean Forest Service in relation to wood preservation treatment. These low penetration results were not significantly improved even if we incised wood samples to improve treatment effect, showing only small increase of 0.7 mm with ACQ and 0.6 mm with CCA. When preservative treatment was tested with heartwood, penetration of preservatives decrease with increase of annual rings per a cross-section area (r=0.5345). We also found that the length and number of check had no effect on preservative treatment, showing r=0.1301 and r=0.1802, respectively.

An Experimental Study on Optimum Slanting Angle in Reticulated Root Piles Installation (그물식 뿌리말뚝의 최적 타설경사각에 관한 실험 연구)

  • 이승현;김병일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • Load testis are executed on model reticulated root piles (RRP) to figure out the optimum slanting angle in the piles installation. One set of model RRP consists of 8 slanting piles which are installed in circular patterns forming two concentric circles, each of which is made by 4 piles. Each pile which is a steel bar of 5m in diameter and 300mm in length is coated to become a pile of 6.5mm in diameter. The slanting angle of the model RRP varies from 0$^{\circ}$ to 20$^{\circ}$ Comparing ultimate bearing capacities of the model RRP of different installation angles, it is observed that the ultimate capacities of the RRP increase as the installation angle increases until 15$^{\circ}$, and the optimum slanting angle of the RRP is around 15$^{\circ}$ The ultimate bearing capacity of the 15$^{\circ}$-RRP is found to be 22% bigger than that of the vertical RRP and 120% bigger than that of the circular surface footing whose diameter is same with the circle formed by outer root piles'heads. However, it is noticed that when the slanting angle of the RRP is increased over 15$^{\circ}$, the ultimate capacity starts to be reduced. The ultimate capacity of 20$^{\circ}$-RRP is even smaller than that of the vertical RRP by as much as 5%. From the observation of the load settlement curve obtained during the RRP load tests, it is known that as the slanting angle gets bigger the load -settlement behavior becomes more ductile.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Drought Resistance of Several Soybean Cultivars (주요대두품종(主要大豆品種)의 내건성(耐乾性)에 관(關)한 연구(硏究))

  • Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.36-46
    • /
    • 1988
  • Twelve soybean cultivars were cultivated in the 1/2,000a. Wagner pots with irrigation and without irrigation for 30 days after flowering, and the differences of plant growth and bean yield among cultivars were compared. And to investigate the varietal differences in the rate of photosynthesis under different relative humidity, 6soybean cultivars were cultivated in 1/2,000a. Wagner pot and the rate of photosynthesis of each soybean cultivar at flowering time was measured under the relative humidity of 80, 70, 60, 50 and 40%. The results obtained are summarized as follows; 1. The days to maturity of the soybean cultivars were shortened by non-irrigation treatment. The response of the maturing dates to non-irrigation was significantly different among the soybean cultivars. The days for maturing of Paldal, Danyeob and Eundaedu were delayed 2 days but those of Jangbaek and Tamahomare were delayed about 7 to 8 days under non-irrigation treatment. 2. The stem length, stem diameter, number of nodes of the mainstem, number of branches and number of branch nodes of all soybean cultivars were decreased by non-irrigation treatment. The number of branches and the number of branch nodes were especially severely influenced by non-irrigation treatment. 3. The number of pods per plant and the number of perfect pods was significantly reduced by non-irrigation treatment but the number of imperfect pods was increased. The non-irrigation treatment reduced the number of pods per plant by 58.0% and the ratio of the number of the perfect pods per plant by 46.6% relative to the ordinary cultivation with irrigation. 4. The grain yield of all cultivars was significantly reduced by the non-irrigation treatment, and average grain yield of soybean cultivars cultivated under non-irrigation treatment was 35.9% of that of soybean cultivars cultivated with irrigation. The influence of non-irrigation treatment was lowest in Paldal and significantly high in Tamahomare and Jangbaek. 5. The rate of photosynthesis of soybean leaves was significantly different among cultivars and was also influenced by relative humidity. Ratio of the photosynthetic amount of soybean leaves at 40% RH to the maximum photosynthesis at optimal humidity was 97.2% in Paldal, 96.4% in Danyeob and 88.8% in Baekun. 6. At 40% relative air humidity, highly significant correlations were found among the photosynthesis rate, the amount of transpiration and the respiration rate.

  • PDF

Comparison of Yield in Aiternating Crop System Mixed of Tillering Hybrid Corn and Soybean (분얼형(分蘖型) 옥수수 교잡종(交雜種)과 대두(大豆)의 교호작(交互作)에 대한 수량(收量) 비교(比較) 시험(試驗))

  • Lee, Hee Bong;Choe, Bong Ho;Lee, Won Koo;Park, Ki Sun;Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.2
    • /
    • pp.117-124
    • /
    • 1993
  • This study was conducted to determine the effects of alternating planting systems of soybean and tillering hybrid corn on yield of both crops. The planting systems included monocultures of both crops. 1 to 1 row ratio, 1 to 2 row ratio, 1 to 3 row ratio, 2 to 1 row ratio, 2 to 3 row ratio, 3 to 1 row ratio, 3 to 2 row ratio and 3 to 3 row ratio of soybean and corn. The results obtained are summarized as follows : The plant height of soybean was increased as the number of planting rows of corn increased. But the plant, height of soybean was quite stabilized when the ratio of soybean planting rows increased. When the plant height of soybean was increased due to the increased row number of corn, the branch number and diameter of soybean decreased and lodging ratio increased. Total fresh weight of soybean per 10a was decreased as the ratio of soybean planting decreased and it was increased when the ratio of soybean planting increased over monoculture of soybean. Dry weight of soybean per 10a showed the same tendency of the fresh weight. But the highest grain yield of soybean was obtained in the monoculture of soybean and it was 276 kg/10a. Comparatively high yield of soybean was obtained in the systems of 2 to 1 and 3 to 3 ratios. The plant height, number of tillers and number of ears per plant of tillering corn were greatly affected by the alternating planting of soybean and they were 208.9cm, 2.1 and 4 per plant, respectively. The fresh and dry weights and yield of corn per 10a showed significant differences among systems. The average fresh and dry weight of corn in the systems of 3 to 1 and 2 to 1 were 1000 kg and 100 kg higher than those of monoculture of corn. The kernel yields of corn per 10a were 438 kg in the monoculture system and 530 kg in the systems of 3 to 2 and 2 to 1. The total fresh weights of corn and soybean in systems of 3 to 1, 3 to 2 and 2 to 1 were higher than 5721 kg of soybean and 4358 kg of corn in the monoculture. Combined dry weight was high in the order of monoculture, 2 to 1 and 3 to 1 row ratios. Combined grain yield was high in the systems of 2 to 1 and 3 to 1 row ratios and it was over 430 kg per 10a.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Microsporogenesis of Hibiscus syriacus L and Its Sporoderm Differentiation (무궁화의 화분형성 및 화분벽의 분화발달)

  • 김인선
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • Complete microsporogenesis of Hibiscus syriacus L. were carried out employing LM, TEM, and SEM to investigate the pollen ontogeny that undergoes considerable structural differentiation. The process first began with several cell diYisions in the anther primordium that produces 3 different tissues of epidennal, archesporial, and connective tissues. Only archesporial tissue involved further differentiation into the tapetum and formation of reproductive cells, pollen mother cells (PMC). The tapetum and PMC were closely associated with each other structurally and metabolically by exhibiting numerous plasmodesmata, mitochondria, and many small vacuoles in their dense cytoplasm. A callosic wall began to surround the PMC while meiosis took place in the PMC to produce 4 microspores. When thick callose encircled each microspore as a frame, the sporodenn development initiated from the plasma membrane of a pollen grain in a tetrad. The first fonned sporoderm layer was bacules and tectum of sexine that originated from the plasma membrane. After the dissolution of a callose, further development Qf sporoderm continued in the order of nexine 1, nexine 2, and intine layer. The nexine layer was thicker (ca. $2-3.5\;\mu\textrm{m}$) than the intine layer whose thickness was about $0.9-1.5\;\mu\textrm{m}$. Upon completion of the sporoderm development, that is after intine formation, spines and apertures of pollen surface ornamentation initiated from the tectum. Spines were dimorphic, about $4-9\;\mu\textrm{m}\;an;15-20\;\mu\textrm{m}$ in length, and no basal cushion was detected. The mature pollen grains ranged $100-200\;\mu\textrm{m}$ in diameter, but their average was about $170\;\mu\textrm{m}$. About 120 spines were observed over the spheroidal pollen surface. Apertures were simple punctures of $2-3\;\mu\textrm{m}$ in diameter and about 50 apertures were arranged somewhat helically over the surface. Comparing such features of form and size of the pollen, sporodenn sculpture and structure, and aperture and spine conditions with known evolutionary trends in the genus Hibiscus, Hibiscus syriacus seemed to possess many advanced features in the sporodenn differentiation.iation.

  • PDF

'Dakyeong', Earley-heading, Resistance to Lodging and High-yielding Forage Oats Cultivar (조숙 내도복 다수성 추파용 귀리 품종 '다경')

  • Park, Tae-Il;Kim, Yang-Kil;Park, Hyung-Ho;Oh, Young-Jin;Park, Jong-Chul;Kang, Chon-Sik;Park, Jong-Ho;Cheong, Young-Geun;Kim, Kyong-Ho;Choi, Kyu-Hwan;Hong, Ki-Heung;Chae, Hyun-Seok;Ku, Ja-Hwan;Ahn, Jong-Woong;Han, Ouk-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • 'Dakyeong' (Avena sativa L.), a winter oats for forage use, was developed by the breeding team at National Institute of Crop Science, RDA in 2016. It was derived from a cross between 'CI7505'(IT133304) and 'Swan'(IT197920). Subsequent generations followed by the cross were handled in bulk and pedigree selection programs at Iksan and Jeonju, respectively. After preliminary and advanced yield test for 2 years, 'SO2004009-B-B-10-8-3-9', designated as a line name of 'Gwiri91', were subsequently evaluated for earliness and forage yield during 3 years in four parts such as Jeju (upland), Yesan (upland), Iksan (upland), and Jeonju (paddy), from 2014 to 2016, and finally named as 'Dakyeong'. Cultivar 'Dakyong' has leaves of dark green color, thick diameter culm and long grain of brown color. Over 3 years, the heading date of 'Dakyeong' was about 5 days earlier than that of check cultivar 'Samhan' (April 30 and May 5, respectively), and their average forage dry matter yield harvested at milk-ripe stage was higher 12% ($15.7tone\;ha^{-1}$) than $14.0tone\;ha^{-1}$ of check cultivar. Cultivar 'Dakyeong' was lower than the check cultivar 'Samhan' in terms of the protein content (6.1% and 7.0%, respectively) and total digestible nutrients (62.1%, and 62.5%, respectively), while the TDN yield was more than the check ($7.79tone\;ha^{-1}$ and $7.64tone\;ha^{-1}$, respectively). Fall sowing cropping of 'Dakyeong' is recommended only in areas where average daily minimum mean temperatures in January are higher than $-6^{\circ}C$, and it should not be cultivated in mountain areas, where frost damage is likely to occur.

'Hi-early', Early Heading and Harvestable Winter Forage Oats Cultivar (수확이 빠른 조숙성 조사료용 월동귀리 '하이어리')

  • Park, Tae-Il;Kim, Yang-Kil;Park, Hyung-Ho;Oh, Young-Jin;Park, Jong-Chul;Kang, Chon-Sik;Park, Jong-Ho;Cheong, Young-Geun;Kim, Kyong-Ho;Choi, Kyu-Hwan;Hong, Ki-Heung;Chae, Hyun-Seok;Ku, Ja-Hwan;Ahn, Jong-Woong;Han, Ouk-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Oats (Avena sativa L.), which are known as one of the forage crops of Korea, have good livestock palatability and are popular to cattle farmers because of their high dry matter. However, the cultivation of double cropping in the rice field was reluctant due to the late maturing for farmers to plant rice continuously. 'Hi-early', a winter oats for forage use, was developed by the breeding team at National Institute of Crop Science, RDA in 2016. It was derived from a cross between '517A2-121'(IT133383) and 'CI7604' (IT133379). Subsequent generations followed by the cross were handled in bulk and pedigree selection programs at Suwon, Iksan and Jeonju, respectively. After preliminary and advance yield test for 2 years, 'SO2004015-B-B-23-1-3-7', designated as a line name of 'Gwiri92', were subsequently evaluated for earliness and forage yield during 3 years in four parts such as Jeju (upland), Yesan (upland), Iksan (upland), and Jeonju (paddy), from 2014 to 2016, and finally named as 'Hi-early'. Cultivar 'Hi-early' has the characteristics of medium leaves of green color, thick diameter culm, and medium grain of brown color. Over 3 years, the heading date of 'Hi-early' was about 9 days earlier than that of check cultivar 'Samhan' (April 26 and May 5, respectively). Average forage fresh yield of 'Hi-early' harvested at milk-ripe stage was similar to check cultivar ($40.2tone\;ha^{-1}$ and 40.0 tone ha-1, respectively), and dry matter yield also was similar to check cultivar (14.2 tone ha-1 and $14.0tone\;ha^{-1}$, respectively). Cultivar 'Hi-early' was lower than the check cultivar 'Samhan' in terms of the protein content (6.2% and 7.0%, respectively) and total digestible nutrients (61.0%, and 62.5%, respectively), while the TDN yield was more than the check ($7.91tone\;ha^{-1}$ and $7.64tone\;ha^{-1}$, respectively). Fall sowing cropping of 'Hi-early' is recommended only in areas where average daily minimum mean temperatures in January are higher than $-6^{\circ}C$, and it should not be cultivated in mountain areas, where frost damage is likely to occur.