• Title/Summary/Keyword: Average Grain

Search Result 1,141, Processing Time 0.029 seconds

Effect of Sowing Date and Plastic Film Mulching on Mositure and Temperature of Rhizosphere Soil and Early Growth of Sesame (참깨의 파종기별(播種期別) 플라스틱필름 피복이 근권토양수분(根圈土壤水分) 및 지온(地溫)에 미치는 영향(影響)과 그에 따른 초기생육(初期生育)의 변화(變化))

  • Oh, Dong-Shig;Kwon, Yong-Woong;Im, Jung-Nam;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.125-135
    • /
    • 1994
  • Field experiment was carried out in order to clarify effects of plastic film mulching on temperature and moisture of rhizosphere soil and their subsequent effects on seedling emergence, earlier growth, vegetative growth and grain yield of sesame. The textural class of the experimental field soil was the sandy loam(Bonyang series) and the variety of sesame planted was "Ansan-ggae". The experiment was conducted by combining four sowing dates of April 25, May 10, May 25, June 10 and two mulching treatments(mulching, non-mulching) over two year of 1991 and 1992. The results were summarized as follows : 1. The daily mean soil temperature of 5cm deep soil was increased by 1.4 to $2.8^{\circ}C$ by plastic film mulching. The average soil water content was increased by 0.5 to 3.0%(V/V) in the drier season, while decreased by 1.0 to 2.0%(V/V) in the rainy season by mulching. 2. The establishment rate of sesame seedling was very sensitive to soil temperature. For normal seedling emergence, from the seeding date to the 7th date after sowing, the daily mean soil temperature higher than $21.0^{\circ}C$ was required at the experimental field conditions. 3. The average soil water content in the range of 14.0 to 21.0%(V/V) at 5cm deep soil seemed not to be limiting for the germination and emergence of sesame. The effect of soil water content on seedling establishment was very small in this range, but the optimum level of soil water content ranged from 14.0 to 15.0%(V/V) in the experimented sandy loam. 4. The wetter the soil profile was, the larger the gap of soil temperature between the mulched and non-mulched condition was. The effect of mulching on the establishment rate of sesame seedlings was much greater in the lower air temperature conditions. However, when the sowing of sesame came earlier than at the date with the daily mean air temperature below $19.0^{\circ}C$, the effects of earlier sowing and mulching were offsetted by the retarded seedling growth due to the low air temperature, and thus earlier sowing with mulching did not enhance the grain yield of sesame.

  • PDF

Effect of Different Wind-break Net on Reducing Damage of Cold Sea Wind (수도 풍해경감을 위한 방풍강 강목의 효과)

  • 이승필;김상경;이광석;최대웅;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 1990
  • The reducing effect of wind injury was investigated using several wind-break nets in Youngdeok province where cold-wind damage is often occurred during rice growing season. The white-head damage of rice have been often occurred by typhoon during the period between August 15 to September 10 in the cold wind area of the eastern coastal during the last 11 years (1979-1989). This may suggest that the critical period for heading will be by August 15 in the regions. High evaporation coefficient, more than 250 due to typhoon passage over the regions resulted high injury of white head. Generally, the wind injury have been caused by warm and dry westerlies through Fohn apperance in Taebaeg mountains and by cool-humid wind which blows from coast to inland. The frequency of occurrence of the two types of typhoons were 25, 20%, respectively during rice cultivation. The instalation of wind-break net significantly reduced the wind blowing speed, depending on the net mesher with the higher effect in dence net. The distances between the net and cropping area also affect the wind speed: 23% reduction at 1m distance. 34% at 10m and 28% at 20m, respectively. The reducing effect was also observed even at 10 times height of the wind-break net. The instalation of wind-break net gave several effects on climate factor, showing that temperature increased by 0.8$^{\circ}C$(maximum), 0.7$^{\circ}C$(minimum), 0.6$^{\circ}C$(average) : water temperatures increased by 0.5$^{\circ}C$(maximum), 0.6$^{\circ}C$(minimum), 0.5$^{\circ}C$(average) : soil temperature increased 0.4$^{\circ}C$. The earlier heading and increasing growth rate, use of light, culm length, panicle number per hill, spikelet number per panicle, fertility and 1,000 grain weight were observed in the fields with the wind-break nets resulting in 10-15% increase in rice yield using 0.5${\times}$0.5cm nets. The increasing seedlings per hill gave higher grain yield by 13% in the cold wind damage regions of eastern coastals. and the wind-break was more significant in the field without the wind-break net. Wind injury of rice plant in the cold wind regions of eastern coastals in korea could be reduced by selection of tolerant varieties to wind injury, adjustment of transplanting time, and establishment of wind-break nets.

  • PDF

Changes of Isoflavone Contents During Maturation under Different Planting Dates in Black Soybean (파종기 차이에 따른 등숙기간 중 검정콩의 아이소플라본 함량 변화)

  • Yi, Eun-Seob;Yoon, Seong-Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.424-429
    • /
    • 2012
  • This study was carried out to investigate the influence of different planting time on the synthesis of isoflavone in black soybean, Three varieties used in this experiment were lpumgeomjeongkong, Cheongjakong and Heugcheongkong which had different ecotypes, repectively. Seeds were sown at different time, May 15th, May 30th and June 15th with planting density of $60{\times}15cm$. In order to analyze the content of isoflavone, we collected sample every 5 days from 30 days after flowering to harvest and analyzed them with UPLC. As sowing was delayed, the content of isoflavone increased in all of three varieties. The content of genistein was greater than daidzein and glycitein. Increase of Glycitein was not distinct from 55 days after flowering(DAF) and it was stable against temperature change during the seed developing period. Although the content of genistein in Ilpumgeomjeongkong from 50 to 55 DAF, in Cheongjakong from 40 to 55 DAF and in Heugcheongkong from 60 to 65 DAF was lower than the content of daidzein, it was higher than that of daidzein afterward. In the statistical analysis on the relationship between average temperature and the content of aglycone isoflavone at 5-day intervals from 30 DAF during the grain filling period, genistein in Ilpumgeomjeongkong showed meaningful correlation as y=-15.28x+407.9 ($R^2=0.505^*$), diadzein in Cheongjakong showed meaningful correlation as y=-6.188x-164.5($R^2=0.454^*$), and genistein showed significantly high correlation as y=-11.59x+297.6 ($R^2=0.545^{**}$). Taking all the above results into consideration, it was suggested that the regions suitable for high content of isoflavone in black soybean be the northern area of Gyeonggi-do and Gangwon-do, Chungcheongbuk-do and inland area of Gyeongsangbuk-do, where are relatively low average temperature from flowering stage($R_2$) during the grain filling period.

Distribution of Organic Matter and Heavy Metals in the Surface Sediments from Fishery Resources Protection Areas in the Southwestern Coast of Korea (남서해연안 수산자원보호구역 표층 퇴적물 중 유기물 및 중금속 농도분포)

  • Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin;Kim, Jeong-Bae;Kim, Sang-Su;Hwang, Dong-Woon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.666-677
    • /
    • 2019
  • In order to understand the distribution of organic matter and heavy metal concentrations in the surface sediments of fishery resources protection areas (FRPAs), we measured the grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and concentrations of heavy metals (As, Cd, Cr, Cu, Fe, Hg, Pb, and Zn) in the surface sediments collected at 54 stations of 5 FRPAs (Gamak Bay, Yeoja Bay, Deukryang Bay, Wando coast, and Youngkwang coast) in the southwestern coast of Korea in February 2017. The surface sediments consisted of fine sediment such as mud, with 2.9~8.8Ø (7.4±0.1Ø) of mean grain size. The average concentrations of IL, COD, and AVS in the sediments were 4.63±0.96 %, 13.0±3.1 mgO2/g·dry, and 0.092±0.124 mgS/g·dry, respectively, and were lower for sediments from the Youngkwang coast than those from other FRPAs. The average concentrations of heavy metals in the sediment were 7.5±0.9 mg/kg for As, 0.04±0.02 mg/kg for Cd, 70.2±9.7 mg/kg for Cr, 15.3±2.8 mg/kg for Cu, 3.3±0.5 % for Fe, 0.014±0.003 mg/kg for Hg, 25.0±6.0 mg/kg for Pb, and 99±14 mg/kg for Zn, respectively, and were relatively higher for sediments in the inner bays than those from the outer bays and coasts. Based on the assessment of sediment samples using the sediment quality guidelines (SQGs), the pollutant load index (PLI), and the ecological risk index (ERI), the surface sediments of FRPAs in the southwestern coast of Korea do not appear to be polluted by heavy metals, suggesting that the heavy metal concentrations in the sediments would not adversely impact aquatic and benthic organisms.

Discrimination of Sediment Provenance Using $^{87}Sr/^{86}Sr$ Ratios in the East China Sea ($^{87}Sr/^{86}Sr$비를 이용한 동중국해 대륙붕 퇴적물의 기원 연구)

  • Youn, Jeung-Su;Lim, Chong-Il;Byun, Jong-Cheol;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.92-99
    • /
    • 2005
  • To discriminate the provenance of shelf sediments in the East China Sea, textural and elemental compositions along with strontium isotopic ratio ($^{87}Sr/^{86}Sr$) were analyzed and compared with the sediments originated from Chinese rivers. The sediments in the study area are composed of fine-grained mud with a mean grain size of $47\;{\phi}$ and their $CaCO_3$, contents range from 3.9 to 11.5% (average 7.6%). In the study area, the content of most metallic elements are strongly constrained by sediment grain size (quartz dilution effect) and that of biogenic material and, thereby, their spatial distribution seems not enough for understanding sediment provenance in the study area. The muddy sediments of the Yangtze river have much lower $^{87}Sr/^{86}Sr$ ratio ($0.71197{\sim}0.71720$) than the Yellow Sea shelf muddy sediments which are supposed to be originated from the Huanghe river ($0.72126{\sim}0.72498$), suggesting the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. Different source rock compositions and weathering processes between both drainage basins may account for the differences in $^{87}Sr/^{86}Sr$ ratio. Although the ratios show wide range, from 0.71445 to 0.72184 with an average 0.71747 in the study area, they are close to the values of the Yangtze river sediments, suggesting that the sediments were mainly originated from the Yangtze river. The previous studies on the dispersal pattern of modern sediments and the physico-chemical properties of seawater in the Yellow and East China seas support the possibility that the fine-grained Yangtze river sediments can reach to the East China Sea shelf as well as to the southeastern Yellow Sea.

HEAVY METAL CONTINT IN THE SEDIMENTS FROM THE CONTINENTAL SHELF AROUND JEJU ISLAND AND SOUTHERN COASTAL AREA, KOREA (濟州道周圍 및 南海沿岸 堆積物中의 重金屬含量)

  • 석봉출;박병권
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.29-42
    • /
    • 1983
  • This stidy was intended to investigate the heavy metal contents in the bottom sediments of the continental shelt around the Jeju Island and ot the southern coastal area of the Korean Peninsula. For this study 39 bottom sedinent samples were taken from the study area using Phleger gramity corer and Snapper. The average contents of heavy metals were 59.1 ppm Zn, 362.6 ppm Mn, 63.8 ppm Cr, 15.7 ppm Pb, 10.0 ppm Co, 28.9 ppm Ni, 10.5 ppm Cu, and 2.7% Fe in the surficial sediments around the Jejr Island; and 79.ppm Zn, 384 ppm Mn, 8.6 ppm Pb, 17.8 ppm Ni, 23.2 ppm Cu, and 1.59 % fe in those of nearsgore of the southern coastal area respectively. The heavy metal contents were higher in the northwestern part around the Jeju Island compared to those in other region. However, these tendencies were not the result of pollution, but of the differences of grain size of the sedimenrs. In the nearshore of the southern coast, the heavy metal contents did not show any geographical tendency. However, those of Masan and Jinhae Bays wew higher than those of the other region. These seemed to be caused by waste disposal from the industrial compsex located at the adjacent land. Nevertheless these values of heavy metal content except for Zn and Cu in Masan Bay and inner bay of Jinhae are lower than the average values of the each world-wide data of the nearshore sedimentl. The pair correlations of the cach heavy metal elements were calculated by regressino analysis using VAX 780 computer. the following pair elements, such as Zn-Cu, Ni-Cu, Fe-cu, Cr-Cu, Co-Zn, Ni-Zn, Cr-Zn, Ni-Co, Fe-Co, Cr-Co, Fe-Ni, Cr-Ni and Cr-Fe show closely posetive linear correlations in the sediments around the Jeju Island. In general, the heavy metal content increases in proportion to the increase of the mean values of the grain size of the sediments around the Jeju Island. In the southern coastal area, in gineral, thepair correlations of each heavy metal elements did not southern coastal area, in general, the pair correlatttttions of rach heavy metal elements did not show any positive correlation except for the positive linear correlations of Cu-Zn, Cu-ni and Ni-Mn. It is interpreted as a result of the differences of the physecochemical environment of the sampling sites and also of the influences of the ondustrial wastes from the manufacturing factores located at the coastal zone of the study area.

  • PDF

Yield Response of Rice Affected by Adverse Weather Conditions Occurred in 1999 (1999년에 발생한 기상재해 유형별 벼 수량반응조사 연구)

  • Ju Young-Cheoul;Lim Gab-June;Han Sang-Wook;Park Jung-Soo;Cho Young-Cheol;Kim Soon-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • The objectives of this study were to investigate weather conditions which induced discolored grains and viviparous germination, and to evaluate yield responses following viviparous germination during mid- and late- ripening stage, the submergence during reproductive growth stage, and lodging in the yellow ripe stage. Weather conditions which caused glume discoloration at heading stage were 21.3-26.4$^{\circ}C$ in average temperature, 75.2-98.4% in relative humidity, 19.3 in transpiration coefficient and 10.8-13.8 m/sec. in wind speed. Yield reduction was 26-27% and 10~17%, respectively, when the glume discoloration rates were 63.2-65.7% and 38.3-45.2%, obviously due to the decrease in percent of fertile grain and ripening ratio. Weather conditions during continuous rain for 7 days were 96% in relative humidity, 18.9$^{\circ}C$ in average temperature, 21.9$^{\circ}C$ in maximum temperature, and 16.8$^{\circ}C$ in minimum temperature, causing the most viviparous germination in Juanbyeo(45.5%), followed by Jinbubyeo(14.5%), Bongkwangbyeo(14.2%), and Obongbyeo(12.6%). Lateral tillers started to occur when the submergence at the depth of 1.5-2 m lasted one day during the reproductive growth stage. The submergence for 2-3 days at 3-4 m of water depth induced 269-571 lateral tillers/m$^2$, supporting 32-52% of the total yield. The rice yield in the paddy fields which were left under the lodging conditions until harvesting was not different compared to that of the paddy fields which were kept upright by tieing them together after lodging, but perfect grain ratio decreased about 9.1% in the transplanting culture and 12.5% in the direct seeding culture on dry paddy field because of the increase in immature grains.

  • PDF

Agricultural Geography of Rice Culture in California (미국 캘리포니아주(州)의 벼농사에 관한 농업지리학적 연구)

  • Lee, Jeon;Huh, Moo-Yul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.51-67
    • /
    • 1996
  • There are three main rice-growing regions in the United States: the prairie region along the Mississippi River Valley in eastern Arkansas; the Gulf Coast prairie region in southwestern Louisiana and southeastern Texas; and the Central Valley of California. The Central Valley of California is producing about 23% of the US rice(Fig. 1). In California. most of the crop has been produced in the Colusa, Sutter, Butte, Glenn Counties of the Sacramento Valley since 1912, when rice was commercially grown for the first time in the state(Fig. 2). Roughly speaking, the average annual area sown to rice in California is about 300,000 acres to 400,000 acres during the last forty years(Fig. 3). California rice is grown under a Mediterranean climate characterized by warm, dry, clear days, and a long growing season favorable to high photosynthetic rates and high rice yields. The average rice yield per acre is probably higher in California than in any other rice-growing regions of the world(Fig. 4). A dependable supply of irrigation water must be available for a successful rice culture. Most of the irrigation water for California rice comes from the winter rain and snow-fed reservoir of the Sierra Nevada mountain ranges. Less than 10 percent of rice irrigation water is pumped from wells in areas where surface water is not sufficient. It is also essential to have good surface drainage if maximum yields are to be produced. Rice production in California is highly mechanized, requiring only about four hours of labor per acre. Mechanization of rice culture in California includes laser-leveler technology, large tractors, self-propelled combines for harvesting, and aircraft for seeding, pest control, and some fertilization. The principal varieties grown in California are medium-grain japonica types with origins from the cooler rice climates of the northern latitudes (Table 1). Long-grain varieties grown in the American South are not well adapted to California's cooler environment. Nearly all the rice grown recently in California are improved into semidwarf varieties. Choice of variety depends on environment, planting date, quality desired, marketing, and harvesting scheduling. The Rice Experiment Station at Biggs is owned, financed, and administered by the rice industry. The station was established in 1912, as a direct result of the foresight and effort of Charles Edward Chambliss of the United States Department of Agriculture. Now, The station's major effort is the development of improved rice varieties for California.

  • PDF

A New Early-Heading, High-Yielding Triticale Cultivar for Forage, 'Shinseong' (숙기가 빠르고 종실 수량이 많은 트리티케일 신품종 '신성')

  • Han, Ouk-Kyu;Park, Hyung-Ho;Park, Tae-Il;Oh, Young-Jin;Song, Tae-Hwa;Kim, Dea-Wook;Chae, Hyun-Seok;Hong, Ki-Heung;Bae, Jeong-Suk;Kim, Ki-Soo;Yun, Geon-Sig;Lee, Seong-Tae;Ku, Ja-Hwan;Kweon, Soon-Jong;Ahn, Jong-Woong;Kim, Byung-Joo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.2
    • /
    • pp.142-149
    • /
    • 2016
  • 'Shinseong', a winter forage triticale cultivar (X Triticosecale Wittmack), was developed at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2015. The cultivar 'Shinseong' was selected from the cross RONDO/2$^*$ERIZO_11//KISSA_4/3/ASNO/ARDI_3//ERIZO_7 by CIMMYT (Mexico) in 1998. Subsequent generations were handled in pedigree selection programs at Mexico from 1999 to 2004, and a line 'CTSS98Y00019S-0MXI-B-3-3-5' was selected for earliness and good agronomic characteristics. After preliminary and advance yield testing in Korea for 3 years, the line was designated 'Iksan47'. The line was subsequently evaluated for earliness and forage yield in seven locations, Jeju, Iksan, Cheongwon, Yesan, Gangjin, Daegu, and Jinju from 2013 to 2015 and was finally named 'Shinseong'. Cultivar 'Shinseong' has the characteristics of light green leaves, yellow culm and spike, and a medium grain of brown color. The heading date of cultivar 'Shinseong' was April 24 which was 3 days earlier than that of check cultivar 'Shinyoung'. The tolerance or resistance to lodging, wet injury, powdery mildew, and leaf rust of 'Shinseong' were similar to those of the check cultivar. The average forage dry matter yield of cultivar 'Shinseong' at milk-ripe stages was $15MT\;ha^{-1}$, which was 3% lower than that ($15.5MT\;ha^{-1}$) of the check cultivar 'Shinyoung'. The silage quality of 'Shinseong' (6.7%) was higher than that of the check cultivar 'Shinyoung' (5.9%) in crude protein content, while was similar to the check cultivar 'Shinyoung' in acid detergent fiber (34.6%), neutral detergent fiber (58.6%), and total digestible nutrients (61.6%). It showed grain yield of $7.2MT\;ha^{-1}$ which was 25% higher than that of the check cultivar 'Shinyoung' ($5.8MT\;ha^{-1}$). This cultivar is recommended for fall sowing forage crops in areas in which average daily minimum mean temperatures in January are higher than $-10^{\circ}C$.

Evaluation of External Quality of Polished Barley (시판 소포장 보리쌀의 품위 평가)

  • Bae, Sook-Hyun;Kim, Hong-Sig;Jong, Seung-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.124-133
    • /
    • 2009
  • Demand for the high quality barley with fibroid material and functional substances has been increasing in recent although the amount of barley consumption decreased drastically during the last two decades. But the limited information on quality of barley makes consumers hard when they purchase barley for their own consumption. Therefore, 51 brand barley, .i.e., 28 naked barley and 23 waxy barley from supermarkets and 10 polished barley from local markets were collected, and their external quality were analyzed to provide basic information on brand barley. Among 51 brand barley, 56% were 1kg package and 25% were 800 g package and there was no significant difference ($1{\pm}3.62\;g$) between printed and actual weighs. The weight of 1,000 grains of naked barley and waxy barley ranged $18.6{\sim}26.7\;g$ and $14.6{\sim}24.7\;g$, respectively. Thousand grain weight of 38% of naked barley ranged $20{\sim}22\;g$, while that of 43% of waxy barley ranged $18{\sim}20\;g$. The ratio of normal grains was 88% and 94% for naked barley and waxy barley, respectively, when separated with 1.7 mm sieve. Although 82% of brand barley products were free from foreign substances, in 18% of brand barley products, sands, pieces of cloth and wood, other kinds of grain and insect larvae were found, Average test weight of brand barleys was $843g{\cdot}L^{-1}$ with range of $805{\sim}917g{\cdot}L^{-1}$. Water content was less than 14% in 7.8% of barley products, while it was $14{\sim}15%$ in 62.7% of them. Average whiteness of brand barley was 31.06, while waxy barley had higher whiteness with 27.28 than naked barley with 34.16. Heated water uptake rate of milled naked barley and milled waxy barley were 215.4% and 231.7%, respectively, while expansion rate of milled naked barley and milled waxy barley were 379.7% and 401.6%, respectively. Barley from local markets were as good as brand barley products in 1,000 grain weight, ratio of normal grains, inclusion of foreign substances, test weight, water content, whiteness, water uptake rate, and expansion rate, but they showed higher ratio of foreign substances included.