• Title/Summary/Keyword: Average Grain

Search Result 1,140, Processing Time 0.032 seconds

Evaluation Method for Graphene Grain Boundary by UV/ozone-oxidation Chemical-etching Process (UV/ozone 산화처리 및 화학적 식각공정을 적용한 그래핀 Grain Boundary 평가 방법)

  • Kang, Jaewoon;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Chemical vapor deposited (CVD) polycrystalline graphene is widely used for various sensor application because of its extremely large surface-to-volume ratio. The electrical properties of CVD-graphene is significantly affected by the grain size and boundaries (GGBs), but evaluation of GGB of continuous monolayer graphene is difficult. Although several evaluation methods such as tunneling electron microscopy, confocal Raman, UV/ozone-oxidation are typically used, they still have issues in evaluation efficiency and accuracy. In this paper, we suggest an improved evaluation method for precise and simple GGB evaluation which is based on UV/ozone-oxidation and chemical etching process. Using this method, we could observe clear GGBs of CVD-graphene layers grown by different process conditions and statistically evaluate average grain sizes varying from $1.69{\sim}4.43{\mu}m$. This evaluation method can be used for analyzing the correlation between the electrical properties and grain size of CVD-graphene, which is essential for the development of graphene-based sensor devices.

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

Grain Refinement and Mechanical Properties Improvement in a Severely Plastic Deformed Ni-30Cr Alloy (강소성 가공된 Ni-30Cr 합금의 결정립 미세화와 기계적 물성 향상)

  • Song, Kuk Hyun;Kim, Han Sol;Kim, Won Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.649-656
    • /
    • 2011
  • The present study evaluated the microstructures and mechanical properties of severely deformed Ni-30Cr alloys. Cross-roll rolling (CRR) process was introduced as a severe plastic deformation (SPD), and Ni-30Cr alloy sheets were cold rolled to 90% thickness reduction and subsequently annealed at $700^{\circ}C$ for 30 min to obtain the recrystallized microstructure. Electron back-scattering diffraction (EBSD) was introduced to analyze grain boundary character distributions (GBCDs). The application of CRR to the Ni-30Cr alloy was effective in enhancing the grain refinement through heat treatment; consequently, the average grain size was significantly refined from $33{\mu}m$ in the initial material to $0.6{\mu}m$. This grain refinement directly improved the mechanical properties, in which yield and tensile strengths significantly increased relative to those of the initial material. We systematically discuss the grain refinement and accompanying improvement of the mechanical properties, in terms of the effective strain imposed by CRR relative to conventional rolling (CR).

Drying of Rough Rice by Solar Collectors (태양(太陽) 열(熱 )집열기(集熱機)를 이용(利用)한 벼의 건조(乾燥)에 관(關)한 연구(硏究))

  • Chang, Kyu-Seob;Kim, Man-Soo;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.264-272
    • /
    • 1979
  • The flat-plate and tubular soar collectors were designed and constructed for drying the rough rice, and the performance of the collectors and drying effect were investigated when rough rice was packed in grain bin connected to collectors. Average-monthly radiation on a horizontal surface based on bright sunshine in Daejeon area during 1978 was the highest as $16,814\;KJ/m^2{\cdot}day$ in May and the lowest as $4,254\;KJ/m^2{\cdot}day$ in December, and significane was not recognized between the calculated and recorded values. The thermal effciency of collectors were increased as radiation increased during drying period and the average thermal effciency of flat-plate and tubular collectors in 11 to 12 o'clock a.m were 28.12 and 16.75%, respectively. The average inlet temperature of grain bin at 12 o'clock was shown as 20.02 at control 40.5 at grain bin connected to tubular collector and $55.1^{\circ}C$ at grain bin connected to flat-plate collector. In 25 cm rough rice depth in grain bin, tim taken for drying from initial moisture content at 27.4 to decrease upto 17.0% (14.5 % on wet basis) were 32 in control, 18 in grain bin connected to tubular collector and 11 hrs to flat-plate collector, and grain depth influenced drying rate remarkably. In the view point of drying characteristics, drying pattern showed initially falling-rate to constant-rate period finally.

  • PDF

Differences among Major Rice Cultivars in Tensile Strength and Shattering of Grains during Ripening and Field Loss of Grains (벼알의 인장강도 및 탈립성의 등숙중 변화와 품종간 차이 및 포장손실과의 관계)

  • Y. W. Kwon;J. C. Shin;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • Degree of grain shattering which is of varietal character is an important determinant for the magnitude of field loss of grains during harvest and threshing. Seven Indica \times Japonica progeny varieties and four Japonica varieties were subjected to measurements of tensile strength of grains, degree of grain shattering when panicles were dropped at 1.5m above concrete floor, and moisture content of grains (wet basis) during a period 35 to 63 days after heading. In addition, two varieties were tested for the relation of tensile strength of grains to the magnitude of field loss of grains in actual binder harvest. The 11 varieties differed conspicuously in tensile strength of grains and the degree of grain shattering: the weakest average tensile strength of grains of a variety was about 90g and the strongest about 250g with varying standard deviation of 30 to 60g. Three Indica \times Japonica varieties and one Japonica variety shattered I to 30% of the grains under the falling test. The threshold tensile strength of grains allowing grain shattering was estimated to be 180g on average for a sampling unit of 10 panicles, but only the grains having tensile strength weaker than 98g within the samples shattered. A decrease in average tensile strength by 10g below the threshold value corresponded to an increase of 3 to 5% in grain shattering. Most varieties did not change appreciably the tensile strength of grains and degree of grain shattering with delay in time of harvest and showed a negative correlation between the tensile strength and the moisture content of grains. The average tensile strength of grains was negatively correlated linearly with field loss in binder harvest. The average tensile strength for zero field loss in binder harvest was estimated to be 174g and a decrease in the average tensile strength by 10g corresponded to an increase of 40kg per hectare in field loss of grains. Instead of the average tensile strength of grains, the percentage of grains having tensile strength weaker than 100g is recommended as a criterion for the estimation of field loss of grains during harvesting operations as well as a basis of variety classification for grain shattering, since the standard deviation of tensile strength of grains varies much with variety and time of harvest, and individual grains having tensile strength stronger than 98 did not shatter practically.

  • PDF

Bending and Compressive Strength Properties of Larix kaempferi According to Thinning Intensity (간벌강도에 따른 낙엽송의 휨 및 종압축강도성능)

  • Chong, Song-Ho;Won, Kyung-Rok;Hong, Nam-Euy;Park, Byung-Su;Lee, Kyung-Jae;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.385-392
    • /
    • 2014
  • The purpose of this study was to determine the effects of plantation thinning on physical and mechanical properties of Larix kaempferi. Tree samples were obtained from unthinned, moderately, heavily thinned plantations where located in Kwangryung forest research stand. The effects of different thinning methods on the bending and parallel to grain compressive strengths of Larix kaempferi were explored. Average latewood ratio with various thinning treatments revealed the trend of unthinning < moderate thinning < heavy thinning treatment. Average annual ring width with various thinning treatments showed the trend of unthinning < moderate thinning or heavy thinning treatment. Average bending and parallel to grain compressive strengths with various thinning treatments revealed the trend of unthinning > moderate thinning > heavy thinning treatment. This indicates that thinning treatment reduces average bending and parallel to grain compressive strength properties.

An Analysis of Compression Wear Designs and Structural Elements (컴프레션웨어의 디자인과 제품구성요소 분석)

  • Lee, Jung Hwa;Jun, Jung Il;Choi, KuengMi
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.421-433
    • /
    • 2014
  • The aim of this study was to provide compression wear manufacture brands with information needed for product development. 8 tops and 7 bottoms from widely recognized compression wear manufacture brands were selected, and their product structural elements were analyzed, too. The results showed that most compression wear designs were applications of cutting lines designed considering muscle movements of the human body. The average number of cutting lines for patterns and designs were 14 for tops and 15 for bottoms. Different colored material was mainly used on the top for areas that require ventilation or high movement during sports for tops, and for areas that require muscle and joint support during sports for bottoms. The functionality of top materials were found to be stretch, muscle support, moisture absorption and high speed drying, warmth and ventilation for tops, in order of frequency, and stretch, muscle support, moisture absorption and high speed drying, and pressure for bottoms, in order of frequency. Tops were cut in the direction of the lengthwise grain, and bottoms were not only cut in the direction of the lengthwise grain, but also in the direction of the crosswise grain and bias for many products. Tops consisted of an average of 13 organically connected panels, and bottoms consisted of an average of 18 organically connected panels, which was analyzed to improve functionality. The average clothing surface area stretch rate was 85.7% for tops and 70.0% for bottoms, indicating that bottoms were designed to have higher strain rates compared to tops.

Evaluation on Microstructure and Mechanical Properties of Severely Deformed Pure Cu (강가공된 순수 Cu의 미세조직과 기계적 특성 평가)

  • Song, Kuk-Hyun;Son, Hyun-Taek;Kim, Dae-Keun;Kim, Han-Sol;Kim, Won-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.263-267
    • /
    • 2011
  • The present study was carried out to evaluate the microstructural and mechanical properties of cross-roll rolled pure copper sheets, and the results were compared with those obtained for conventionally rolled sheets. For this work, pure copper (99.99 mass%) sheets with thickness of 5 mm were prepared as the starting material. The sheets were cold rolled to 90% thickness reduction and subsequently annealed at $400^{\circ}C$ for 30 min. Also, to analyze the grain boundary character distributions (GBCDs) on the materials, the electron back-scattered diffraction (EBSD) technique was introduced. The resulting cold-rolled and annealed sheets had considerably finer grains than the initial sheets with an average size of 100 ${\mu}M$. In particular, the average grain size became smaller by cross-roll rolling (6.5 ${\mu}M$) than by conventional rolling (9.8 ${\mu}M$). These grain refinements directly led to enhanced mechanical properties such as Vickers micro-hardness and tensile strength, and thus the values showed greater increases upon cross-roll rolling process than after conventional rolling. Furthermore, the texture development of <112>//ND in the cross-roll rolling processed material provided greater enhancement of mechanical properties relative to the case of the conventional rolling processed material. In the present study, we systematically discuss the enhancement of mechanical properties in terms of grain refinement and texture distribution developed by the different rolling processes.

Grain Size Dependence of Soft Magnetic Properties in $Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$ Nanocrystalline Alloys ($Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$계 초미세결정립합금의 결정립 크기에 따른 자기적 특성의 변화)

  • 조용수;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.37-41
    • /
    • 1991
  • Amorphous $Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$ alloys were prepared by using rapidly quenching techinque and were annealed above their crystallization temperatures. Coercive force, initial permeability and AC power loss of the annealed $Fe_{68.5}Co_5M_3Cu_1Si_{13.5}B_9(M=Nb, Mo, Mn, Cr)$ alloys have been studied systematically. Nanocrystallines are formed in the annealed alloys which include Mo and Nb. Remarkably improved soft magnetic properties are obtained in the alloys whose average grain size is around 10 nm. However, soft magnetic properties of the alloys are degraded when grain size is less than IOnm or larger than 15nm. It is considered that the degradation of soft magnetic properties in the alloys whose average grain size is less than 10 nm is due to the Fe-rich amorphous phase retained at grain boundary during the initial crystallization process.

  • PDF

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.