• 제목/요약/키워드: Available Network Traffic

검색결과 193건 처리시간 0.018초

다중 인터페이스 MIPv6 환경에서의 Fast Handover 방안 및 성능 분석 (Fast Handover Mechanism for Multi-Interface MIPv6 Environments and Performance Evaluation)

  • 박만규;황안규;이재용;김병철
    • 대한전자공학회논문지TC
    • /
    • 제44권12호
    • /
    • pp.34-43
    • /
    • 2007
  • 최근에 이동 단말들의 급격한 증가와 함께 이동 노드에 다양한 무선 접속 기술들의 사용이 가능해졌다. 또한 IPv6 기술이 네트워크에 도입되면 하나의 단말이나 인터페이스에 여러 개의 공중 IP주소를 가지는 멀티호밍 (multi-homing) 단말이 일반화될 것이다. 이에 맞추어 다중 인터페이스 멀티호밍 단말에 대한 이동성 관리기술 연구가 무선 인터넷 분야에서 활발히 진행 중이다. 본 논문에서는 다중 인터페이스를 지원하는 FMIPv6의 FBU 메시지를 대신하여, "tunnel destination" 이동성 옵션과 이 옵션을 표시하는 'T' flag를 이용하는 MFBU 메시지를 새로 정의하여, NAR이 아닌 특정 터널링 목적지로 핸드오버 동안 패킷을 터널링 시키는 다중 인터페이스 fast handover Mobile IPv6 절차의 확장을 제안한다. 이는 기존의 FMIPv6를 이용하여 핸드오버절차를 수행하는 동안 TCP 플로우의 패킷 도착순서가 바뀌어 세 개의 중복 ACK에 의한 불필요한 혼잡 제어로 성능이 저하되는 것을 완화하여 핸드오버 성능을 향상시키게 된다. 본 논문에서는 그 성능을 검증하기 위해 기존의 단일 인터페이스 MIPv6 NS-2 시뮬레이터를 확장하여 다중 인터페이스 FMIPv6 시뮬레이터를 구현하였으며, TCP 트래픽을 이용한 시뮬레이션을 통해 핸드오버 성능 향상을 확인하였다.

AIC(AKaike's Information Criterion)을 이용한 교통량 예측 모형 (Traffic Forecasting Model Selection of Artificial Neural Network Using Akaike's Information Criterion)

  • 강원의;백남철;윤혜경
    • 대한교통학회지
    • /
    • 제22권7호
    • /
    • pp.155-159
    • /
    • 2004
  • 최근 교통량 예측을 위한 인공 신경망(Artificial neural networks : ANNs) 구조와 학습방법에 대한 연구가 다양하게 시도되고 있다. 이것은 신경망이 유연한 비선형 모형(non-linear model)으로 강력한 패턴 인식 능력을 가지고 있기 때문이다. 그러나, 신경망은 비선형 모형이기 때문에 많은 매개변수(parameter)를 사용하게 되면서 과적합(overfitting) 문제에 부딪히게 된다. 본 논문에서는 이러한 교통량 예측을 위한 신경망 모형에서 과적합을 해소하기 위한 방안으로 매개변수에 대한 다양한 모형선택기준(model selection criterion)에 대한 적용성에 대해서 알아보았다. 특히, AIC계열을 중심으로 모형선택기준으로 선택된 모형이 과적합 경향을 해소하고 시간적 전이성을 보장할 수 있는지를 분석하는데 본 연구의 목적을 두고 있다. 교통량 자료를 신경망 모형에 적용하여 분석한 결과, 첫째 학습자료(in-sample) 모형선택기준에 의해 선택된 모형이 검증자료(out-of-sample)의 최적의 성능을 보장하지는 못한다는 결과를 얻었다. 즉, 본 연구에서 기존의 연구에서처럼, 학습자료(in-sample)의 최적 모형이 검증자료(out-of-sample)의 성능과 직접적인 관계가 없다는 것을 알 수 있었다. 둘째 모형선택기준의 안정성을 분석한 결과 AIC3, AICC, BIC는 안정적인 모형을 선택하는 기준으로서 의미가 있는 것으로 분석되었다. 하지만, AIC4의 경우는 최상의 모형과 편차가 큰 것으로 분석되었다. 시계열 자료 분석과 예측에 있어서 모형의 불확실성은 학습 자료와 검증 자료의 상관관계에 영향을 줄 수 있음에 비춰볼 때, 앞으로 보다 많은 자료에 대한 분석이 필요하다고 판단되며, 다른 시계열 자료에 대한 분석이 요구된다. 수 없었지만, 확정적 통행배정모형으로 설정한 경우, Stackelberg게임 접근법이 Cournot-Nash게임 접근법 보다 더 우수함을 확인할 수 있었다.다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다

기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구 (A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm)

  • 신휴성;김동규;임민진;이규범;오영섭
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.95-107
    • /
    • 2017
  • 본 논문에서는 제도적으로 운영 중인 터널내 CCTV들로부터 실시간으로 들어오는 영상들을 최신 딥러닝 알고리즘을 이용, 학습시켜 다양한 조건의 터널환경에서 돌발 상황을 감지하고 그 돌발 상황의 종류들을 분류해 내는 시스템 개발을 위한 사전검토 연구를 수행하였다. 사전검토 연구를 위해, 2개의 도로현장의 교통류 CCTV영상 일부를 이용하여 가용한 전통적인 영상처리기법으로 영상내부로 집입하는 차량을 감지하고, 이동경로를 추적하여 일정 시간간격의 이동 차량의 좌표와 시간정보를 추출하고 학습자료를 구성하였다. 각 차량의 이동정보는 차선변경, 정차 등 6가지의 이벤트 정보와 연계된다. 차량 이동정보와 이벤트로 구성된 학습자료는 레질리언스(resilience) 기계학습 알고리즘을 이용하여 학습하였다. 2개의 은닉층을 설정하고, 각 은닉층의 노드수에 대한 9개의 은닉구조 모델을 설정하여 매개변수 연구를 수행하였다. 본 사전검토의 경우에는 첫 번째, 두 번째 은닉층 노드수가 각각 300개와 150개로 설정된 모델이 합리적으로 가장 추론정확도가 높은 것으로 평가되었다. 이로부터 일반화되기 매우 힘든 복잡한 교통류 상황을 기계학습을 이용하여 어떠한 사전 규칙설정 없이도 교통류의 특징들을 정확히 자동으로 감지할 수 있는 가능성을 보였다. 본 시스템은 시스템의 운용을 통해 지속적으로 교통류 영상과 이벤트 정보가 늘어난다면, 자동으로 그 시스템의 인지능력과 정확도가 자동으로 향상되는 효과도 기대할 수 있다.