• Title/Summary/Keyword: Available Capacity

Search Result 1,160, Processing Time 0.032 seconds

Active Distribution System Planning for Low-carbon Objective using Cuckoo Search Algorithm

  • Zeng, Bo;Zhang, Jianhua;Zhang, Yuying;Yang, Xu;Dong, Jun;Liu, Wenxia
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.433-440
    • /
    • 2014
  • In this study, a method for the low-carbon active distribution system (ADS) planning is proposed. It takes into account the impacts of both network capacity and demand correlation to the renewable energy accommodation, and incorporates demand response (DR) as an available resource in the ADS planning. The problem is formulated as a mixed integer nonlinear programming model, whereby the optimal allocation of renewable energy sources and the design of DR contract (i.e. payment incentives and default penalties) are determined simultaneously, in order to achieve the minimization of total cost and $CO_2$ emissions subjected to the system constraints. The uncertainties that involved are also considered by using the scenario synthesis method with the improved Taguchi's orthogonal array testing for reducing information redundancy. A novel cuckoo search (CS) is applied for the planning optimization. The case study results confirm the effectiveness and superiority of the proposed method.

The Technique of Installing Floating Photovoltaic Systems (수상태양광의 시공기술에 관한 실증연구)

  • Choi, Young-Kwan;Yi, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4447-4454
    • /
    • 2013
  • In October 2011, a commercialized 100kW class floating photovoltaic system positive plant was installed at Hapcheon dam a multi-purpose reservoir the first time ever in the nation. Floating photovoltaic system differs in water float, mooring device and underwater cable process from land photovoltaic system. As for land and building photovoltaic power generation equipments, many installation cases and skilled experiences are available, and thus installation is not difficult. However, commercial power generation floating photovoltaic system, which is attempted for the first time in the nation, requires to be designed and installed through a series of processes like technical review and verification of data by process in comparison with similar cases. The structure of floating photovoltaic system, an equipment for float photovoltaic module and other electrical equipment, is required to withstand weather environments like wind or typhoon etc and yet not affect water quality negatively, and for implementation of this system, construction efficiency and economy etc should be considered comprehensively. In this paper, the techniques of installing floating photovoltaic structure, mooring device, underwater cable, electrical equipment and remote monitoring control system are explained. The 100kW floating PV system is operating with 15% average capacity factor.

An Efficient Load Balancing Technique in Cluster Based VOD Servers using the Dynamic Buffer Partitioning (동적 버퍼 분할을 이용한 클러스터 VOD 서버의 효율적 부하 분산 방법)

  • Kwon, Chun-Ja;Kim, Young-Jin;Choi, Hwang-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.9C no.5
    • /
    • pp.709-718
    • /
    • 2002
  • Cluster based VOD systems require elaborate load balancing and buffer management techniques in order to ensure real-time display for multiuser concurrently. In this paper, we propose a new load balancing technique based on the dynamic buffer partitioning in cluster based VOD servers. The proposed technique evenly distribute the user requests into each service node according to its available buffer capacity and disk access rate. In each node, the dynamic buffer partitioning technique dynamically partitions the buffer to minimize the average waiting time for the requests that access the same continuous media. The simulation results show that our proposed technique decreases the average waiting time by evenly distributing the user requests compared with the exiting techniques and then increases the throughput in each node. Particularly under the overloaded condition in the cluster server, the simulation probes that the performance of the proposed technique is better two times than the Generalized Interval Caching based technique.

Physico-Chemical Properties on the Management groups of Upland Soils in Korea (밭유형(類型)에 따른 토양(土壤)의 이화학적(理化學的) 특성(特性))

  • Rim, Sang-Kyu;Hur, Bong-Koo;Jung, Sug-Jae;Hyeon, Geun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.67-71
    • /
    • 1997
  • To grasp the physico-chemical properties on the management groups of upland soil, the data obtained from the detailed soil survey which conducted from 1964 to 1979 by Agricultural sciences Institute, were analyzed and classified. The clay content in A horizon soil was low in sandy textured and well adapted types and high in heavy clayey type, and that in B horizon was lowest in volcanic ash type and highest in heavy clayey type. High organic matter content was found in the volcanic ash and plateau type. The correlations among soil physico-chemical properties were significant. Especially canon exchange capacity of B horizon soil was highly correlated with the content of available water, clay, silt and organic matter positively.

  • PDF

The Chemical Properties of Plastic-house Soil and Yield Responses of Green Pepper (꽈리풋고추 하우스 재배지토양의 화학적 특성과 수량반응)

  • Ryu, In-Soo;Lee, In-Hack;Hwang, Seon-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 1995
  • This experiment was conducted to obtain basic information for the management of soil and fertilization for plastic-house soil cultivated Khwari green pepper in Dang Jin area of Chung Nam Province. The range of pH with highest frequency for 36 sites investigated was 6.1~6.5, OM 1.6~2.5%, available phosphorous 601~800mg/kg, CEC 12.1~14.0 c mol/kg, clay 16.1~18.0% and below 2.0ds/m for electical conductivity of soil. Fesh fruit weight of green pepper showed very high significant positive correlation with organic matter, clay content and cation exchange capacity, while negaive correlation with electrical conductivity. Electrical conductivity showed highly significant negative correlation with CEC, clay content and organic matter in soil, respectively. To decrease below 2.0 dS/m of electrical conductivity in plastic-house soil, the content of clay and organic matter could be maintained at above 1.8% and 2.3%, respectively.

  • PDF

A Dynamic Task Distribution approach using Clustering of Data Centers and Virtual Machine Migration in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 데이터센터 클러스터링과 가상기계 이주를 이용한 동적 태스크 분배방법)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.103-111
    • /
    • 2016
  • Offloading tasks from mobile devices to available cloud servers were improved since the introduction of the cloudlet. With the implementation of dynamic offloading algorithms, mobile devices can choose the appropriate server for the set of tasks. However, current task distribution approaches do not consider the number of VM, which can be a critical factor in the decision making. This paper proposes a dynamic task distribution on clustered data centers. A proportional VM migration approach is also proposed, where it migrates virtual machines to the cloud servers proportionally according to their allocated CPU, in order to prevent overloading of resources in servers. Moreover, we included the resource capacity of each data center in terms of the maximum CPU in order to improve the migration approach in cloud servers. Simulation results show that the proposed mechanism for task distribution greatly improves the overall performance of the system.

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

A Low Cost IBM PC/AT Based Image Processing System for Satellite Image Analysis: A New Analytical Tool for the Resource Managers

  • Yang, Young-Kyu;Cho, Seong-Ik;Lee, Hyun-Woo;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 1988
  • Low-cost microcomputer systems can be assembled which possess computing power, color display, memory, and storage capacity approximately equal to graphic workstactions. A low-cost, flexible, and user-friendly IBM/PC/XT/AT based image processing system has been developed and named as KMIPS(KAIST (Korea Advanced Institute of Science & Technology) Map and Image Processing Station). It can be easily utilized by the resource managers who are not computer specialists. This system can: * directly access Landsat MSS and TM, SPOT, NOAA AVHRR, MOS-1 satellite imagery and other imagery from different sources via magnetic tape drive connected with IBM/PC; * extract image up to 1024 line by 1024 column and display it up to 480 line by 672 column with 512 colors simultaneously available; * digitize photographs using a frame grabber subsystem(512 by 512 picture elements); * perform a variety of image analyses, GIS and terrain analyses, and display functions; and * generate map and hard copies to the various scales. All raster data input to the microcomputer system is geographically referenced to the topographic map series in any rater cell size selected by the user. This map oriented, georeferenced approach of this system enables user to create a very accurately registered(.+-.1 picture element), multivariable, multitemporal data sets which can be subsequently subsequently subjected to various analyses and display functions.

POWER UPRATES IN NUCLEAR POWER PLANTS: INTERNATIONAL EXPERIENCES AND APPROACHES FOR IMPLEMENTATION

  • Kang, Ki-Sig
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.255-268
    • /
    • 2008
  • The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.