• Title/Summary/Keyword: Auxiliary heat

Search Result 130, Processing Time 0.025 seconds

Thermal Energy Storage and Release Characteristics of the Soil in the Greenhouse Equipped with Heat Pump and Latent Heat Storage System (열펌프-잠열축열 시스템 온실에서 토양의 열저장 및 방열 특성)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In order to obtain the information of bio-environment control, the thermal characteristics of soil in the greenhouse heated by the heat pump and latent heat storage system were experimentally analyzed. The experimental systems were composed of the greenhouse with a heat pump and a latent heat storage system (system I), the greenhouse with a heat pump (system II), the greenhouse with a latent heat storage system (system III), and the greenhouse without auxiliary heating system (system IV). The thermal characteristics experimentally analyzed in each system were temperature of soil layers, soil heat storage and release, soil heat capacity and soil heat storage ratio. The results could be summarized as follows. 1. Time to reach the highest temperature at 20cm deep in soil layers of the crop routs in case of system I was shown to be delayed by 6 hours in comparison to the time of the highest temperature at the soil surface. 2. In the clear winter days, the stored heat capacity values fur the system I and the system II were shown to be 22.3% and 11.0% higher than the released heat capacity respectively, and the stored heat capacity values for the system III and the system IV were shown to be 6.2% and 29.6% lower than the released heat capacity respectively This confirms that the system I provided the best heat storage effect. j. The heat quantity values stored or released were shown to be highest at 5 cm depth of soil layers. And it was reduced with increasing of depth of soil layers until 20 cm and was not changed under the soil layer of 20 cm depth. 4. The heat absorption rates of soil, the ratio between supplied and stored heat energy, fur both the system I and system II were lower than 23%.

Development of a Thermal Design Software for the Heat Recovery Steam Generator of Combined Cogeneration Systems (열병합 복합발전시스템용 폐열회수 보일러 열설계 소프트웨어 개발 연구)

  • Kim, T.K.;Oh, S.D.;Kwon, Y.H.;Seo, S.H.;Kim, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.726-731
    • /
    • 2001
  • A thermal design software is developed for the heat recovery steam generator(HRSG) of combined cogeneration systems. The heat transfer is calculated by using the element method to account for the varying thermal properties across the heat transfer elements. The circulation balance is computed for the evaporator to accurately estimate the steam generation rate and to check the proper circulation of the boiler water through the tubes. The software developed can be used to simulate HRSG systems with various combinations of auxiliary burner, wall superheater, superheater, reheater, evaporator, and economizer. Systems with several different combinations of the system components are successfully tested. And it is concluded that the developed software can be used for the design of heat recovery steam generators with various combinations of heat transfer components.

  • PDF

Comparison Between Two Solar Absorption Cooling System Using Single Effect and Single Effect/Double Lift Cycle (일중효용 사이클과 일중효용/2단승온 사이클을 이용한 태양열 흡수식 냉방시스템의 비교)

  • 정시영;이상수;조광운;백남춘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-276
    • /
    • 2000
  • A numerical study has been carried out to find out the optimal design condition of a solar absorption cooling system. The system was composed of solar collectors and an absorption chiller with LiBr/water The System performance with commercial single effect(SE) cycle and a new single effect/double lift(SE/DL) cycle utilizing low temperature hot water was calculated and compared. It was found that the required solar collector area grew exponentially as the overall heat loss coefficient of solar collectors increased. For instance, the required area for cooling capacity of 1 USRT was $17m^2$ if heat loss coefficient was 4 W/$m^2\;cdot\;K$. If heat loss coefficient was doubled($8\;W/m^2\;cdot\;$K), the required collector area was increased by 6 times($100m^2$) .It was also found that the SE-cycle as the heat loss coefficient of solar collectors increased. Generally, a SE/DL-cycle seems to be more advantageous than a SE-cycle if loss coefficient of solar collector is greater than 4 W/$m^2\;cdot\;K$.

  • PDF

Conceptual design of a MW heat pipe reactor

  • Yunqin Wu;Youqi Zheng;Qichang Chen;Jinming Li;Xianan Du;Yongping Wang;Yushan Tao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1116-1123
    • /
    • 2024
  • -In recent years, unmanned underwater vehicles (UUV) have been vigorously developed, and with the continuous deepening of marine exploration, traditional energy can no longer meet the energy supply. Nuclear energy can achieve a huge and sustainable energy supply. The heat pipe reactor has no flow system and related auxiliary systems, and the supporting mechanical moving parts are greatly reduced, the noise is relatively small, and the system is simpler and more reliable. It is more favorable for the control of unmanned systems. The use of heat pipe reactors in unmanned underwater vehicles can meet the needs for highly compact, long-life, unmanned, highly reliable, ultra-quiet power supplies. In this paper, a heat pipe reactor scheme named UPR-S that can be applied to unmanned underwater vehicles is designed. The reactor core can provide 1 MW of thermal power, and it can operate at full power for 5 years. UPR-S has negative reactive feedback, it has inherent safety. The temperature and stress of the reactor are within the limits of the material, and the core safety can still be guaranteed when the two heat pipes are failed.

Thermoregulatory Behavior and Self-identified Thermal Tolerance of Young Males Residing in Urban Area (도시 거주 남자 대학생의 자각적 내한내열성과 체온조절 행동)

  • Kim, Dami;Jeong, Dahee;Park, Joonhee;Lee, Joo-Young
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.245-263
    • /
    • 2016
  • This study was conducted to investigate the thermoregulatory behavior of young males in terms of self-identified thermal tolerance. We recruited 436 male students from Seoul ($24.0{\pm}4.6yr$ in age, $175.3{\pm}5.5cm$ in height, $70.1{\pm}10.6kg$ in body mass, and $23.0{\pm}2.7$ in BMI) in accordance with four types of self-identified thermal tolerance: 1) tolerable of both cold and heat, BCH (N=15); 2) heat tolerable only, HTO (N=118); 3) cold tolerable only, CTO (N=162); and 4) neither cold nor heat tolerable, NCH (N=141). The questionnaire consisted of 55 questions regarding preference to cold or heat environment, seasonal thermoregulatory behaviors including clothing habits, seasonal sleeping environments, health care/physical fitness, and anthropometric items. The results showed that: 1) BCH preferred less auxiliary heating devices, gloves/hats, or thermal underwear in winter and had very few experiences with cold/heat injuries or catching a cold, whereas NCH showed the opposite behavior and experiences as BCH; 2) thermoregulatory behaviors were not symmetrical between summer and winter. Most male students preferred cold beverage/foods to using cooling devices to lower body temperature in summer, whereas auxiliary heating devices were preferred to warm beverage/foods to maintain body temperature in winter; 3) thermoregulatory behaviors of NCH had more items in common with HTO than CTO, while the behaviors of BCH were more closely related to CTO than the behaviors of BCH were more closely related to CTO than HTO. Overall, we confirmed that thermoregulatory behaviors were apparently classified by self-identified thermal tolerance, and such behaviors could be adjusted by improving cold or heat tolerance.

Preparation and Characterization of Reduced Iron by Using Wastes as Auxiliary Fuels (폐기물을 보조연료로 이용한 환원철 제조 및 환원거동 분석)

  • Je, Hyun-Mo;Kim, Kyoung-Seok;Chu, Yong-Sik;Roh, Dong-Kyu
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • In this study, the wastes were used as fuels for direct reduction iron (DRI) production to reduce production cost and recycle the wastes. We examined the effects of wastes on the reduction behavior of DRI manufacture and the possibility of using wastes as auxiliary fuels. The proximate and Ultimate analysis were carried out to confirm the properties of wastes as fuels, and high-quality reduced irons were fabricated by using the waste as an auxiliary fuel. The metallization of reduced irons increased as the calorific value increase of auxiliary fuel. Especially, the reduced irons fabricated from the waste tires and vinyl plastics which had high heat energy and volatile matters showed higher metallization than the others. The high calorific value and volatility of waste were significant properties as fuel. The high quality DRI could be fabricated with wastes as auxiliary fuels through optimization of reaction conditions.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

The Optimal Operation Pattern and Heat Pricing Scheme for District Heating CHP System (지역난방용 열병합발전시스템의 최적운전패턴과 적정 열요금구조)

  • 권영한;김창수;진병문;김진오
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.183-192
    • /
    • 1996
  • This paper presents a numerical model of the optimal operation pattern of the CHP system built for duel-purpose of power generation and district heat production. The model can be differently formulated in accordance with the view of planner: society, electric utility or district-heating company. Here, the operation pattern of the system components and the effect of heat price are of major interest in the study. From the case study, it was found that the optimal use of auxiliary heating equipment is very important to achieve the minimum societal cost. And, the multi-step heat pricing scheme is desirable to induce the voluntary behavior of both companies towards the societal optimal pattern.

  • PDF

Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted (태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

An Evaluation of the Solar Thermal Performance of the Solar/Geo Thermal Hybrid Hot Water System for a Detached House (단독주택용 태양열/지열 융복합시스템의 태양열 급탕성능 평가)

  • Baek, Namchoon;Han, Seunghyun;Lee, Wang Je;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.581-586
    • /
    • 2015
  • In this study, an analysis was performed on the performance of the solar water heating system with geo-thermal heat pump for a detached house. This system has a flat plate solar collector ($8\;m^2$) and a 3 RT heat pump. The heat pump acts as an auxiliary heater of the solar water heating system. These systems were installed at four individual houses with the same area of $100\;m^2$. The monitoring results for one year are as follows. (1) The average daily operating time of the solar system appeared to be 313 minutes in spring (intermediate season), and 135 minutes and 76 minutes in winter and summer respectively. The reason for the short operating time in summer is the high storage temperature due to low water heating load. The high storage temperature is caused by a decrease in collecting efficiency as well as by overheating. (2) The geothermal heat pump as an auxiliary heater mainly operates on days of poor insolation during the winter season. (3) Despite controlling for total house area, hot water consumption varies greatly according to the number of people in the family, hot water usage habits, etc. (4) The yearly solar fraction was 69.8 to 91.5 percent, which exceeds the maximum value of 80% as recommended by ASHRAE. So the solar collector area of $8\;m^2$ appeared to be somewhat greater for the house with an area of $100\;m^2$. (5) The observed annual efficiency of solar systems was relatively low at 13.5 to 23.6%, which was analyzed to be due to the decrease in thermal efficiency and the overheating caused by a high solar fraction.