• Title/Summary/Keyword: Auxiliary grounding grid

Search Result 10, Processing Time 0.023 seconds

Measurement of Grounding Impedances in Large-scale Grounding Electrode Systems (대형접지전극시스템 접지임피던스의 측정)

  • Lee, Kyoung-Hoon;Choi, Jong-Hyuk;Choi, Young-Chul;Lee, Kyu-Sun;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.193-196
    • /
    • 2008
  • In these days, large structures are constructed and bonded with ground grid Because the distances between mesh and auxiliary electrodes are not enough in downtown areas, it is very difficult to measure the ground resistance of large scale grounding electrode systems. Actually the auxiliary electrodes for test are installed in grounding grid. This paper present the experimental results of ground resistance and impedance according to the location of auxiliary electrode. As a result, we get much lower resistances and impedances than real values the auxiliary electrodes are placed in the ground grid. In case that the auxiliary electrodes are located in the ground grid the resistances are very low and reactance only is inductive component.

  • PDF

Reduction of the the Ground Surface Potential Gradients by Installing Auxiliary Grounding Grids (보조접지그리드의 시설에 의한 대지표면전위경도의 저감)

  • 이승칠;엄주홍;이복희;김효진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2002
  • The present paper describes a technique for installing an effective grounding grids, the major objective is forced on the experimental evaluation of the performance and characteristics with the arrangement and installation method for grounding grids consisting of the means to protect electric shock, electronics and computerized facilities against lightning, switching and ground fault surges. The study is oriented on two major areas: (1) the analysis of the ground surface potential gradient with the arrangement of grounding grids, (2) the control of the dangerous ground surface potential rise. The experiments wee carried out with the impulse currents as a function of the installation method or arrangement of grounding grids. An installation method of the inclined auxiliary grounding grid was proposed to overcome the drawbacks of equally spared grounding grids, i.e. an appropriate design concept far the installation of grounding grids was found out, It has been shown that the installation of the intwined auxiliary grounding grid can also result in a mere than 50% decrease in the maximum potential gradient on the ground surface and enhance the level of safety for persons and electronic equipments..

Measurement of the Ground Resistance using the Fall-of-Potential Method with the Vertically-placed Current and Potential Auxiliary Electrodes (전류 및 전위 보조전극을 수직으로 배치하는 전위강하법을 이용한 접지저항의 측정)

  • Lee, Bok-Hee;Kim, Ki-Bok;Kim, You-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.53-60
    • /
    • 2012
  • The fall-of-potential method is commonly used in measuring the ground resistance of large-scaled grounding system and the current and potential auxiliary electrodes are horizontally arranged. Because the distances between the ground grid to be tested and auxiliary electrodes are limited in downtown areas, it is very difficult to measure accurately the ground resistance of large-scaled grounding system. In this paper, the fall-of-potential method of measuring the ground resistance with the vertically-placed current and potential auxiliary electrodes was examined and discussed. The validity and good accuracy of the proposed method of measuring the ground resistance were confirmed through various simulations and actual tests carried out in uniform and two-layer soil structures.

Measurement method of ground impedance for the grounding grid (접지그리드의 접지임피던스 측정 기법)

  • Lee, Bok-Hee;Choi, Jong-Hyuk;Choi, Young-Chul;Yoo, Jae-Duk;Beak, Young-Hwan;Kim, Dong-Seong;Shin, Hee-Kyung;Yoo, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1487_1488
    • /
    • 2009
  • In these days, the common grounding systems are adapted in most large structures. In order to evaluate the performance of grounding system, it is needed to measure ground impedance. Measuring methods of ground impedance for a large scale grounding systems have not been yet presented in detail. In this paper, we analyze earth mutual resistance and mutual coupling of $15{\times}15m$ grounding grid in different arrangements of auxiliary electrode. As a results, the auxiliary electrodes are installed where the error rate due to earth mutual resistance is less than 5%. Also, the potential lead is installed at obtuse angle from the current lead and the overlapped length between potential lead and grounding grid are minimized.

  • PDF

The transient grounding impedance measurment of large grid grounding electrodes (대규모 그리드 접지전극의 과도접지임피던스의 측정)

  • Jeon, Byung-Wook;Lee, Su-Bong;Li, Feng;Lee, Seung-Ju;Jung, Dong-Cheol;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.69-72
    • /
    • 2008
  • This paper presents the transient and conventional grounding impedance behaviors of large grid grounding system associated with the injection point of impulse current The measurement methods consider two possible errors in the grounding-system impedances: (1) ground mutual resistance due to current flow through ground from the ground electrode to be measured to the current auxiliary, (2) ac mutual coupling between the current test lead and the potential test lead The test circuit was set to reduce the error factors. The transient grounding impedance depends on the rise time and injection point of impulse current It is effective that grounding conductor is connected to the center of the large grid grounding system.

  • PDF

Measurement of Impedance of the Grounding Grid using Variable Frequency Inverter (가변주파수 인버터를 이용한 접지임피던스 측정)

  • 이복희;엄주홍;김교운
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.303-306
    • /
    • 2002
  • This paper presents a novel method for measuring the ground impedance in grounding systems. A square wave current was injected to the main grounding grid through auxiliary electrode, and the test current and ground potential rise(GPR) were measured using the band-pass filter. Ground impedance was calculated from the sinusoidal waveforms of the test current and GPR in frequency range of 20~2100Hz. Also the resistance and reactance component of ground impedance were analyzed.

  • PDF

Analysis Technique of Risk Voltage around Grounding Electrode by New Touch and Step Voltage Measurement Methods (새로운 접촉 및 보폭전압 측정법에 의한 접지전극 주위의 위험전압 분석기법)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.81-86
    • /
    • 2012
  • This paper describes the analysis technique of risk voltage around grounding electrode by new touch and step voltage measurement methods. We have analyzed three techniques for risk voltage measurement, such as footprint-electrode method, test-probe method, and simulated-personnel method. We have selected test-probe method considering applicability of site. In order to reduce error related to the location of the auxiliary electrode, we propose a new approach to perform risk voltage measurement with minimum errors and short auxiliary electrode distances. Field tests were carried out at a grounding grid. It can be concluded that the proposed method will be satisfactory for risk voltage measurement.

Improvement of Transient Grounding Performance with Auxiliary Grounding Grid (보조접지망에 의한 과도접지성능의 개선)

  • Choi, Jong-Kee;Jung, Gil-Jo;Kim, Seon-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.932-934
    • /
    • 1998
  • In an electric substation, there are many sources of surge such as switching operations or lightning strokes. A grounding system submitted to such surge current presents very different behaviour from the observed under low frequency current. Especially, it has been reported that significant overvoltage occurs at the current feed-in point, and this may cause damages to other grounded components in the substation area. This paper describes the basic mechanism of improvement of grouding performance in transient state with auxiliary grounding grids.

  • PDF

Grounding Electrode Design for the Reduction of Hazardous Voltage in Lightning Protection (위험전압 저감을 위한 피뢰설비용 접지전극의 설계)

  • Lee, B.H.;Lee, S.C.;Eom, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2071-2073
    • /
    • 2000
  • Grounding electrode design is an important part in lightning protection, and the limit of hazardous voltages (step and touch voltages) below the permissible voltage for human body has been the main goal of grounding electrode design. In this paper, the grounding electrode for the reduction of hazardous voltages was designed and evaluated newly. It was known that the inclined auxiliary grounding conductors installed outside the grounding mesh grid are very effective to reduce the step and touch voltages.

  • PDF

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.