• Title/Summary/Keyword: Auxiliary converter

Search Result 383, Processing Time 0.021 seconds

Development of the 5kW Class Polymer Electrolyte Fuel Cell System for Residential Power Generation (5kW 급 주택용 고분자 연료전지 시스템)

  • Yang, Tae-Hyun;Park, Gu-Gon;Yoon, Young-Gi;Lee, Won-Yong;Yoon, Wang-Lai;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2003
  • Polymer electrolyte fuel cells(PEFC) have been considered to be a suitable candidate for residential, portable and mobile applications, due to their high efficiency and power density, even at low operating temperature. KIER developed a 5kW class PEFC system for residential application and operated the system for over 1,000 hours. To develop a 5kW PEFC system, performance of a cell was improved through successive tests of single cell of small and large area. Fabrication of three 2,5 kW class stacks, design and fabrication of natural gas reformer, design of auxiliary equipments such as DC/DC converter, DC/AC inverter and humidifying units were carried out along with integration of components, operation and evaluation of total system. During the development period from 1999 to 2001, MEA(membrane electrode assembly) fabrication technologies, design and fabrication technologies for separators, stacking technologies and so on were developed, thereby providing basis for developing stacks of higher efficiency and power density in the future. Experience of development of natural gas reformer opened possibilities to use various kinds of fuels. Main results obtained from the development of a 5kW class PEFC system for residential application are summarized.

Modified Modular Multilevel Converter with Submodule Voltage Fluctuation Suppression

  • Huang, Xin;Zhang, Kai;Kan, Jingbo;Xiong, Jian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.942-952
    • /
    • 2017
  • Modular multilevel converters (MMCs) have been receiving extensive research interest in high/medium-voltage applications due to its modularity, scalability, reliability, high-voltage capability, and excellent harmonic performance. Submodule capacitors are usually rather bulky because they have to withstand fundamental frequency voltage fluctuations. To reduce the capacitance of these capacitors, this study proposes a modified MMC with an active power decoupling circuit within each submodule. The modified submodule contains an auxiliary half bridge, with its capacitor split in two. Also, the midpoints of the half bridge and the split capacitors are connected by an inductor. With this modified submodule, the fundamental frequency voltage fluctuation can be suppressed to a great extent. The second-order voltage fluctuation, which is the second most significant component in submodule voltage fluctuations, is removed by the proper control of the second-order circulating current. Consequently, the submodule capacitance is significantly reduced. The viability and effectiveness of the proposed new MMC are confirmed by the simulation and experimental results. The proposed MMC is best suited for medium-voltage applications where power density is given a high priority.

On the Design of Power Supply System for Freight Train Reefer Container Based on Simulation

  • Kim, Joouk;Hwang, Sunwoo;Lee, Jae-Bum;Hwang, Jaemin;Chae, Uri
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • In recent years, if we order food by easily accessing the online market with our smartphone, we can receive the product in a fresh state at dawn the next day. Cold chain is an industry that can create high added value because it has both the characteristics of general logistics and sensitivity to temperature. Based on the electrical specifications derived from the reefer container capacity requirement investigation, we proved that power supply to up to 33 reefer containers can be made by using three additional auxiliary power supplies which are applied for freight trains in Korea. In this paper, we conducted a research on a design of power supply system for freight train reefer container based on simulation as a basic research necessary for low-temperature distribution and cold chain construction based on the reefer container railroad. Consequently, the simulation was conducted using the three-phase inverter diagram in PSIM and the SVPWM (3-harmonic injection method) control technique, and it was verified that the required power voltage was satisfied with 622Vdc, which is lower than the input voltage of general SPWM of 718Vdc. The details of this paper could be used as a foundational study for constructing cold chains based on a reefer container dedicated to freight trains in the future.