• Title/Summary/Keyword: Auxiliary air compressor

Search Result 19, Processing Time 0.032 seconds

Performance of a Reciprocating Compressor Equipped with Auxiliary Port (보조 흡입구가 장착된 왕복동 압축기의 성능 분석)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.637-644
    • /
    • 2008
  • Auxiliary port which had been known to be used to reduce the expansion loss of a refrigeration system was applied to a R134a reciprocating compressor in a household refrigerator cycle with an intention of improving the compressor performance. Effects of the auxiliary port on the compressor performance was investigated by a computer simulation program. When a simple hole was made on the side wall of the cylinder as an auxiliary port and surrounding gas inside the compressor shell was assumed to be drawn into the cylinder through the hole, maximum COP improvement of 1.66% was obtained. With auxiliary port equipped with a plate type of check valve, maximum COP was raised to be 1.99%. COP improvement was more distinctive with decreasing the discharge pressure; COP improvement was 5% with discharge pressure of 7 bar.

Performance of a Reciprocating Compressor Equipped with Auxiliary Port (보조 흡입구가 장착된 왕복동 압축기의 성능 분석)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.163-170
    • /
    • 2008
  • Auxiliary port which had been known to be used to reduce the expansion loss of a refrigeration system was applied to a R134a reciprocating compressor in a household refrigerator cycle with an intention of improving the compressor performance. Effects of the auxiliary port on the compressor performance was investigated by a computer simulation program. When a simple hole was made on the side wall of the cylinder as an auxiliary port and surrounding gas inside the compressor shell was assumed to be drawn into the cylinder through the hole, maximum COP improvement of 1.66% was obtained. With auxiliary port equipped with a plate type of check valve, maximum COP was raised to be 1.99%. COP improvement was more distinctive with decreasing the discharge pressure; COP improvement was 5% with discharge pressure of 7 bar.

  • PDF

A Study on the Control to Compensate Position Sensor Error of the BLDC Motor in an Auxiliary Air Compressor (보조 공기 압축기 내 BLDC전동기의 위치센서 오류 보상 제어)

  • Kim, In-Gun;Hong, Hyun-Seok;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1639-1644
    • /
    • 2015
  • Auxiliary air compressor(ACM) applied to railroad cars is a device which controls amount of compressed air in order that pantographs can be mounted correctly on the roof of an electric train. Existing ACMs consist of dc motors and brushes wear out due to friction with a commutator. Therefore, continuous maintenance is required. However, three phase BLDC motors have higher power density compared to dc motors and the machine maintenance is not needed because electric commutation is possible. The three phase generally uses hall sensors to get position information and this enables the accurate control. This paper suggests an algorithm that compensates the errors occurred when the hall sensors have a breakdown for stable operation.

Performance Analysis of a Combined Scroll Expander-compressor unit for a Fuel Cell System (연료전지용 스크롤 팽창기-압축기 성능해석)

  • Kim, S.J.;Ahn, J.M.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • This paper introduces a conceptual design of a combined scroll expander-compressor unit for a fuel cell. Since air discharged out of the fuel cell stack has still high pressure energy, some power can be extracted from the air by directing it to pass through an expanding device. Such extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed for a 1kW-class fuel cell. The orbiting scroll members of the expander and the compressor were made to share three of common drive shafts installed in the mid frame plate. Performance analysis for the combined expander-compressor unit showed that the installation of this unit could reduce the auxiliary power consumption in the fuel cell by about 42%.

  • PDF

Development of 100 Kw Power Class Airborne Auxiliary Power Unit (100 Kw급 항공용 보조동력장치(APU) 개발)

  • Yang, Soo-Seok;Lee, Dae-Sung;Kim, Seung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.291-300
    • /
    • 1999
  • Currently under development is an airborne auxiliary power unit with 100 Kw equivalent power, which is composed of a centrifugal compressor, a reverse annular combustor, and a radial turbine. Air-foil bearings are used in this power unit to eliminate the oil supplying system, which can reduce the system complexity and weight. The high speed generator is adopted as an electric power generation and engine starting system, which can also eliminate the reduction gear system. Not only electric power but also pneumatic power is provided by bleeding the compressed air This power unit is aimed for the multi-purpose use such as a primary power unit In the army weapon system, an auxiliary power and environmental control unit in a next-generation tank, and a smoke generating unit.

  • PDF

A Study on Safety Design of Auxiliary tank in a high-pressure air compressor (고압공기압축기의 보조탱크 안전설계에 관한 연구)

  • 강동명;오진수;이장규;우창기
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.31-36
    • /
    • 1997
  • Strength test using strain rosette gage have been conducted to investigate safety of an auxiliary tank in a high-pressure air compressor. Thickness of auxiliary tanks in 6063-T5 aluminum at toy are 9mm and 17mm. The result of strength test make a comparison the design in strength of materials by nominal stress and the design in fracture mechanics with consideration of crack size. Summarizing the result: Comparing with the safe working pressure of the strength test and that of the design method in strength of materials by nominal stress with the experimental values, it makes difference 11% and 39% for 9mm and 17mm thickness of auxiliary tanks, respectively, and that of the design method by fracture mechanics, it makes difference 4% and 5% for them, respectively. It is confirmed that the design by fracture mechanics is more economical and safe design than the design in strength of materials by nominal stress.

  • PDF

A Study on the Stable Sensorless Control of BLDC Motor Inside Auxiliary Air Compressor

  • Kim, In-Gun;Hong, Hyun-Seok;Go, Sung-Chul;Oh, Ye-Jun;Joo, Kyoung-Jin;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.466-471
    • /
    • 2017
  • Pantograph must be correctly attached to catenary to continuously supply stable power to railway vehicle, and the device used here is Auxiliary Air Compressor (ACM). The existing ACM used the DC motor that included commutator and brush. Since maintenance and repair by mechanical friction are essential for the DC motor, BLDC motor studies have been conducted to improve this. A three-phase BLDC motor does $120^{\circ}$ two-phase commutation through hall sensors in general. However, since hall sensor is vulnerable to heat and can run only when all three sensors work normally, sensorless control method has been studied to solve this. Using back EMF Zero Crossing Point (ZCP) detection method, this paper will introduce a stable switching sensing method that has a non-commutation area in a low speed zone.

Conceptual design of expander-compressor unit for fuel cell systems (연료전지용 팽창기-압축기 개념설계)

  • Ahn, Jong-Min;Kwon, Tae-Hun;Kim, Hyun-Jin;Yang, Si-Won
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.578-583
    • /
    • 2006
  • This paper introduces conceptual design of scroll expander-compressor unit for fuel cell. Since air discharged out of the fuel cell stack after reaction has still high pressure energy, some power can be extracted out of it by directing it to pass through an expanding device so that the extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed: orbiting scroll of the expander and that of the compressor were made to share three of common drive pins installed in the mid frame plate, and central cavity in the mid-plate was used as a back pressure chamber to provide axial compliance for both orbiting scrolls. Performance analysis for the expander showed that the shaft power of the expander could reduce the auxiliary power consumption in the fuel cell by about one third at the scroll clearance of $10{\mu}m$.

  • PDF

Combined test of Power Supply System for Korean High Speed Train (고속전철용 보조전원장치 시스템 조합시험)

  • Cho, Hyun-Wook;Kim, Yuen-Chung;Kim, Tae-Hwan;Jang, Kyung-Hyun;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.619-625
    • /
    • 2008
  • Electrical Power supply System conditions of korea high speed train consists of main transformer, four AC-DC PWM converter of Auxiliary Block, Battery Charger in Power Car and Trailer Car, Trailer Inverter, Auxiliary inverter. Main transformer, at nominal voltage of 25kv supplied to secondary winding nominal output Voltage 383Vac, The Auxiliary block consists of AC-DC converters for generating 670VDC power, Auxiliary inverters for ventilation and air compressor, Trailer car inverter provide three phase power supplies at 440Vac for air conditioning and heating. The Battery charger Trailer and Power car supplies 72VDC all necessary equipment to energize the trainset equipment and suppy essential control. This Paper introduces the combined test results of the power supply system for korea high speed train. The main purpose of this combined test is to verify the performance of the power supply system that is designed to operate up to full load test.

  • PDF

Performance Test of Supercharger for Vehicle using Solar Cell (태양광발전 방식의 자동차용 과급 장치의 성능 평가)

  • Ko, Kwang-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.942-948
    • /
    • 2011
  • The performance of a supercharger for vehicle using solar cell attached on the exterior of a car, an auxiliary battery, and an air compressor was evaluated in this study. This supercharger is composed of a solar cell of 40W, a battery of 60 Ah, an air compressor of 17 A, 8 $kgf/cm^2$ and an air tank of 8L. It takes about 6 days to charge the battery with the solar cell and the high pressure air of 8L can be supplied about 70 times to engine intake with this battery. The intake pressure increased by about 20~40% with this supercharger. The vehicle power and accelerating performance are enhanced by 87% and 50% each in the low speed range. But the performance improved little in the high speed range because of the rather constant flow rate of air supplied by this type of supercharger.