• Title/Summary/Keyword: Auxiliary Motor

Search Result 178, Processing Time 0.028 seconds

Optimization of DC-DC Converter Design for Charging 12V Auxiliary Battery in Hybrid Electric Vehicle (하이브리드 전기자동차(HEV)의 12V 보조배터리 충전용 DC-DC 컨버터의 최적 설계)

  • Jo Jinsang;Choi Sewan;Song Hongseok;Jung Jinhwan;Kim Hogi
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.325-329
    • /
    • 2004
  • 본 논문은 하이브리드 전기자동차의 12V보조배터리 충전용 DC-DC 컨버터의 최적설계에 관한 것으로 하이브리드 전기자동차의 특성상 DC-DC 컨버터는 최대부하의 $30\%\~70\%$ 정도의 비교적 낮은 부하영역에서 주로 동작하므로 이에 따른 적절한 설계가 요구된다. 따라서 DC-DC 컨버터의 주 동작영역에서 효율이 높도록 주요 설계요소인 스위칭 주파수와 고주파 변압기의 누설인덕턴스를 적절히 선정하고 코아의 윈도우 면적을 최소화하는 최적설계에 관한 연구이다.

  • PDF

Speed Control of Induction Motor Using Flux Compensation In Model Reference Adaptive System (FMRAS에 보상기를 이용한 유도전동기 속도제어)

  • Seo Young-Soo;Lee Chun-Sang
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.200-204
    • /
    • 2002
  • When the vector control, which does not need a speed? signal from a mechanical speed sensor, it is possible to reduce the cost of the control equipment and to improve the control performance in many industrial application. This paper describes a rotor speed identification method of induction motor based on the theory of flux model reference adaptive system. The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the two model are introduced to perform accurate rotor speed estimation. Simulation result show the validity of the proposed control method.

  • PDF

Optimal Selection of Capacitor for a Capacitor Run Single-Phase Induction Motor (콘덴서 단상 유도전동기의 콘덴서 용량의 최적 선정에 관한 연구)

  • Lee, Byung-Sam;Kim, Kyung-Ho;Heo, Du-Suck;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.24-26
    • /
    • 2002
  • The recent emphasis on energy conservation demands an improvement of the efficiency of single-phase induction motors. To take the efficiency operation of the capacitor run single-phase induction motor with auxiliary and main winding, it is very important to select the capacitance value. This paper describes the theoretical analysis method of a single-phase induction motor which is based on the rotating field theory, using the method of symmetrical components. The optimal selection method of capacitance is proposed.

  • PDF

Implementation and Evaluation of Automatic Assembly System from Manual Assembly Process of Small-sized Motor (소형 모터의 수 조립 공정의 자동 조립 시스템 구축 및 평가 체계)

  • Mok, Hak-Soo;Cho, Jong-Rae;Kim, Myoung-Lyoul
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.32-42
    • /
    • 1999
  • This paper proposes and implementation procedure for an automatic assembly system from a manual assembly and an evaluation method of implemented several automatic system alternatives using an AHP (Analytic Hierarchy Process) in a small-sized motor. First, the current product is redesigned for DFA (Design For Assembly) and assembly automation of motor, and then it is decided mechanisms of moving, magazining, feeding, composing of each part using main joining equipment and auxiliary equipment. Following the decided mechanism, the necessary assembly machines are selected or designed considering objectives and assembly conditions. Finally, the layout alternatives are completed for the automatic assembly system. According to the evaluation criteria which are established in advance, the automatic system alternatives are analyzed using AHP.

  • PDF

Magnetic vibration analysis for FEM simulation and experiment of single phase induction motor (단상유도전동기의 FEM시뮬레이션과 실험에 의한 자기적 진동원 분석)

  • Kim, Cherl-Jin;Choi, Chul-Yong;Kim, Hyun-Il;Choi, Geun-Soo;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.945-947
    • /
    • 2003
  • Various kinds of practical machines using single phase induction motor(SPIM) are necessary to control speed and torque. In particular, capacitor-run type SPIM has constitutional characteristics, the motor torque is changed by auxiliary capacitance variation. In this study, we manifest equivalent model having more simplicity, and study the relation between torque and capacitance value of SPIM. And analyze Magnetic vibration for FEM(Finite Element Method) simulation. Also, We design the experimental controller which is able to speed control accurately by phase angle control of AC input voltage. Through the simulation and experimental results, we confirmed validity of this study.

  • PDF

Force Commutated Circuit for Driving The Load Commutated Current Source Inverter (부하전류식(負荷轉流式) 전류형(電流型) 인버터를 구동(驅動)하기 위한 강제전류회로(强制轉流回路))

  • Chung, Y.T.;Lee, S.Y.;Soh, Y.C.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.731-735
    • /
    • 1993
  • When induction motor is driven with a load commutated inverter, the output part of the inverter must be capacitive. But, in order to be a good load commutation at the low speed range, very large capacitor or force commutated circuit must be used regarding the capacity of motor. This paper proposed the force commutated circuit for driving the motor in case of the installation of capacitor which can be capable of load commutation at the rating speed. The force commutated circuit is operated by the LC resonant circuit, auxiliary source and SCR, and also composed of the commutation circuit which control the interval of the inverse voltage across the inverter.

  • PDF

A Study on Adaptive Converter Control Approach for Velocity Control of Electric Motors with Photovoltaic Power Generators (태양광 발전 기반 전동기 속도 제어를 위한 적응형 컨버터 제어 기법에 관한 연구)

  • Park, Sung Won;Kim, Dong Wan;Cho, Hyun Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1400-1406
    • /
    • 2016
  • This paper presents a new adaptive converter control approach for electric motor systems whose voltage source is excited from photovoltaic (PV) power generators. First, an electric model is represented with dynamic states and output velocity of such DC motor systems. We propose a hybrid converter control law in which a state feedback control is applied as an auxiliary control framework. Moreover, control parameter estimation is derived to realize adaptive converter systems for effective control performance against stochastic PV power excitation in practice. We carry out stability analysis for such converter system by using a well-known eigenvalue theory. Lastly, numerical simulation is conducted to test reliability of the proposed converter control approach and prove its superiority in the control point of view.

Speed and Flux Estimation for an Induction Motor Using a Parameter Estimation Technique

  • Lee Gil-Su;Lee Dong-Hyun;Yoon Tae-Woong;Lee Kyo-Beum;Song Joong-Ho;Choy Ick
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, an estimator scheme for the rotor speed and flux of an induction motor is proposed on the basis of a fourth-order electrical model. It is assumed that only the stator currents and voltages are measurable, and that the stator currents are bounded. There are a number of common terms in the motor dynamics, and this is utilized to find a simple error model involving some auxiliary variables. Using this error model, the state estimation problem is converted into a parameter estimation problem assuming that the rotor speed is constant. Some stability properties are given on the basis of Lyapunov analysis. In addition, the rotor resistance, which varies with the motor temperature, can also be estimated within the same framework. The effectiveness of the proposed scheme is demonstrated through computer simulations and experiments.

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • Baek, Seung-Min;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.555-562
    • /
    • 1997
  • With only the classical PID controller applied to control of a DC motor, good (target) performance characteristic of the controller can be obtained if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are known exactly. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee good performance, which is assumed with precisely known system parameters and operating conditions. In view of this and the robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one world wide asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing its superiority to the conventional fixed PID controller.

  • PDF

Modeling and an Efficient Com bined Control Strategy for Fuel Cell Electric Vehicles

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Choi, Joo-Yeop;Choy, Ick;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1629-1633
    • /
    • 2004
  • In this paper, we first implement the simulation environment to investigate the efficient control method of a Fuel Cell Electric Vehicle (FCEV) system with battery. The subsystems of a FCEV including the fuel cell system, the electric motor (including the power electronics) and the tansmission (reduction gear), and the auxiliary power source (battery) are mathematically fomulated and coded using the Matlab/Simulink software. Some examples are given to show the capabilities of the modeled system and d a basic control strategy is examined for the economic energy distribution between the fuel cell and the auxiliary power source. It is illustrated by simulations that the actual vehicle velocity follows the given desired velocity pattern while both SOC control and power distribution control are being performed.

  • PDF