• Title/Summary/Keyword: Auxiliary Mass

Search Result 89, Processing Time 0.021 seconds

Pulverized coal injection system development to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 미분탄 공급 시스템 개발)

  • An, Young-Jin;Kang, Pub-Sung;Kwak, Na-Soo;Choi, Gyung-Min;Lee, Min-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3163-3168
    • /
    • 2008
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) system was developed for iron making. Combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational are numerically predicted to recognize the performance with the locations of nozzles in a blast furnace. A variety of parameters including the pulverized coal quantities, oxygen amounts, inlet temperature of the tuyeres and mass flow rate of coal carrier gas are taken into consideration. Also In order to develop more efficient than existing coal injection system, this study applies a flame measurement system using a charge couple device (CCD) camera and frame grabber. And it has used algorithms of auto sampling from flame shape information and composed the device for location control of PCI. This study find to further improve the blast furnace performance by the control of PCI locations.

  • PDF

Numerical Study of Secondary Coating Die Geometry Effects on High Speed Optical Glass Fiber Coating Process (광섬유 2차 코팅다이 형상 변화에 따른 유리섬유 고속 코팅공정 영향성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • The protective double layer polymer coatings on silica optical fibers are realized by wet-on-wet liquid coating process and they play an important role in final quality of mass produced optical fibers. This numerical study aims to analyze the effects of secondary coating die design parameters by employing two dimensional axisymmetric model of coating cup and coating die geometry and computational fluid dynamics simulations which include temperature dependent viscosity of polymer coating liquids and viscous dissipation heating. Under high speed fiber drawing conditions and pressurized coating liquid supply, the effects of converging die angle are investigated in order to appreciate the change of coating liquid flow patterns such as flow recirculation zone near coating die as well as primary and secondary coating layer thicknesses. The auxiliary coating die to converging coating die is also tested and the results find that this concept is advantageous in achieving stable double layer coatings on silica glass fiber.

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • Kim, Dong-Su;Kim, Chung-Hwan;Kim, Myeong-Seop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

Development of a Field Oxygenation Device and Its Practice in the Oxygen Depleted Water Mass (빈산소 수괴해역 용존산소 환경개선장치 개발과 현장 적용)

  • Lee, Yong-Hwa;Kim, Young-Suk;Shim, Jeong-Min;Kwon, Kee-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.339-344
    • /
    • 2010
  • Oxygen depleted water mass can damage aquatic animals not only in direct way but also in indirect way by generating toxic substances including occurrence of hydrogen sulfide and ammonia which are also highly detrimental to animal life in the water mass. An oxygen dissolution device was developed, which makes turnover of the oxygen rich (over 20 mg/L) surface water down to the bottom where hypoxia is evident and tested the device in terms of oxygen recovery in the oxygen depleted bottom water. the device with turnover rates of $3.6\;m^2$/min at the liquid oxygen injection rate of 48~26.3 L/min could recover dissolved oxygen level to 7~25 mg/L at depth 7 m to lead to the dissolution level of over 90% by the supply of liquid oxygen. The running advantage of the device is that it does not require any auxiliary tank and higher energy for operation. Therefore, it can be highly useful device to relieve damages to the farmed animals in the oxygen depleted waters.

Thermoregulatory Behavior and Self-identified Thermal Tolerance of Young Males Residing in Urban Area (도시 거주 남자 대학생의 자각적 내한내열성과 체온조절 행동)

  • Kim, Dami;Jeong, Dahee;Park, Joonhee;Lee, Joo-Young
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.245-263
    • /
    • 2016
  • This study was conducted to investigate the thermoregulatory behavior of young males in terms of self-identified thermal tolerance. We recruited 436 male students from Seoul ($24.0{\pm}4.6yr$ in age, $175.3{\pm}5.5cm$ in height, $70.1{\pm}10.6kg$ in body mass, and $23.0{\pm}2.7$ in BMI) in accordance with four types of self-identified thermal tolerance: 1) tolerable of both cold and heat, BCH (N=15); 2) heat tolerable only, HTO (N=118); 3) cold tolerable only, CTO (N=162); and 4) neither cold nor heat tolerable, NCH (N=141). The questionnaire consisted of 55 questions regarding preference to cold or heat environment, seasonal thermoregulatory behaviors including clothing habits, seasonal sleeping environments, health care/physical fitness, and anthropometric items. The results showed that: 1) BCH preferred less auxiliary heating devices, gloves/hats, or thermal underwear in winter and had very few experiences with cold/heat injuries or catching a cold, whereas NCH showed the opposite behavior and experiences as BCH; 2) thermoregulatory behaviors were not symmetrical between summer and winter. Most male students preferred cold beverage/foods to using cooling devices to lower body temperature in summer, whereas auxiliary heating devices were preferred to warm beverage/foods to maintain body temperature in winter; 3) thermoregulatory behaviors of NCH had more items in common with HTO than CTO, while the behaviors of BCH were more closely related to CTO than the behaviors of BCH were more closely related to CTO than HTO. Overall, we confirmed that thermoregulatory behaviors were apparently classified by self-identified thermal tolerance, and such behaviors could be adjusted by improving cold or heat tolerance.

Evaluation of Gestational Diabetes Mellitus Risk Factors Using Abdominal Subcutaneous Fat Thickness for Early Pregnancy in the US Imaging (초음파영상에서의 임신초기 복부피하지방두께를 이용한 임신성당뇨 위험인자 평가)

  • Kim, Changsoo;Yang, Sung-Hee;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • The purpose of this study was to investigate the relationship between abdominal subcutaneous fat thickness(ASFT) and maternal gestational diabetes mellitus(GDM) measured by ultrasound at period of pregnancy. We compared maternal age, pre-pregnancy body mass index, and weight gain during pregnancy in 286 pregnant women who were diagnosed with early pregnancy ASFT and high GDM screening test(50 g OGTT) of more than 140 mg/dL. ROC curve analysis was used to determine the cut-off value of ASFT for GDM prediction. Maternal age and weight gain during pregnancy were not related to GDM in the mid-trimester and pre-pregnancy body mass index and earely pregnancy ASFT were significantly different between normal and GDM high risk groups. The cut-off value of ASFT for GDM prediction was 2.23 cm(AUC 0.913. Sensitivity 76.19%, Specificity 93.72%). ASFT measured by ultrasound in early pregnancy was useful as an important index for predicting mid-trimester GDM prediction. Therefore, ASFT can be used as an auxiliary diagnostic index for early recognition of GDM.

Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester (대각선 방향으로 분할된 압전 진동 에너지 수확 장치의 성능 연구)

  • Kim, Jae Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.983-989
    • /
    • 2013
  • This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF