• 제목/요약/키워드: Auxiliary DC/DC Converter

검색결과 204건 처리시간 0.026초

패시브 보조 공진 스너버를 이용한 소프트 스위칭 승압형 DC-DC 컨버터의 토폴로지 (The Topology of Soft Switching Boost Type DC-DC Converter using a Passive Auxiliary Resonant Snubber)

  • 성치호;박한석
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.146-152
    • /
    • 2015
  • In this paper, we propose a boost DC-DC converter using a modification of the passive auxiliary resonant snubber circuit with a DC-DC converter in a typical active auxiliary resonant snubber-bridge inverter. The proposed boost DC-DC converter is small compared to the DC-DC converter according to the soft-switching scheme that requires a general auxiliary switch by realizing the soft switching operation as a DC-DC converter which does not require an auxiliary switch. It is light-weight, switch the turn-on and turn-off switching loss at the time of the superposition of the voltage and current is extremely small, so small. And the reduction of the surge voltage and current of the switch. In addition, the proposed boost DC-DC converter has a high efficiency over a wide load characteristics change area than conventional hard switching PWM boost converter using an RC snubber loss.

A Study on Implementing a Phase-Shift Full-Bridge Converter Employing an Asynchronous Active Clamp Circuit

  • Lee, Yong-Chul;Kim, Hong-Kwon;Kim, Jin-Ho;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.413-420
    • /
    • 2014
  • The conventional Phase-Shift Full-Bridge (PSFB) converter has a serious voltage spike because of the ringing between the leakage inductance of the transformer and the parasitic output capacitance of the secondary side rectifier switches. To overcome this problem, an asynchronous active clamp technique employing an auxiliary DC/DC converter has been proposed. However, an exact analyses for designing the auxiliary DC/DC converter has not been presented. Therefore, the amount of power that is supposed to be handled in the auxiliary DC/DC converter is calculated through a precise mode analyses in this paper. In addition, this paper proposes a lossy snubber circuit with hysteresis characteristics to reduce the burden that the auxiliary DC/DC converter should take during the starting interval. This technique results in optimizing the size of the magnetic component of the auxiliary DC/DC converter. The operational principles and the theoretical analyses are validated through experiments with a 48V-to-30V/15A prototype.

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.

A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link

  • Fathy, Khairy;Kwon, Soon-Kurl
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.124-131
    • /
    • 2007
  • In this paper, a novel type of auxiliary switched capacitor assisted edge resonant soft switching PWM resonant DC-DC converter with two simple auxiliary commutation lossless inductor snubbers is presented. The operation principle of this converter is described using the switching mode equivalent circuits. This newly developed multi resonant DC-DC converter can regulate its DC output AC power under a principle of constant frequency edge-resonant soft switching commutation by an asymmetrical PWM duty cycle control scheme. The high frequency power regulation and actual power characteristics of the proposed soft switching PWM resonant DC-DC converter are evaluated and discussed. The operating performances of the newly proposed soft switching inverter are represented based on simulation results from an applications point of view.

패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석 (Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber)

  • 김정도;문상필;박한석
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

보조회로도 영전압영전류스위칭하는 DC-DC 변환기 (A Fully Soft Switched Full Bridge DC-DC converter)

  • 전성즙;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2512-2514
    • /
    • 1999
  • A new zero voltage and zero current switching(ZVZCS) full bridge DC-DC converter with transformer isolation is proposed for arc welding machines. The proposed DC-DC converter uses an auxiliary transformer to obtain ZCS for leading leg, which provides load current control capability even in short circuit condition. The auxiliary circuit also operates in ZVZCS mode. The power rating of the auxiliary transformer is about 10% of the main transformer. The operation is verified by experiments for 12[KW] prototype.

  • PDF

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

자기부상열차 보조전원장치 경량화를 위한 공진형 HF DC/DC Converter 연구 (Study on the resonant HF DC/DC Converter for the weight reduction of the Auxiliary Power Supply of MAGLEV)

  • 이경복;임지영;조정민;김진수;한영재;최성호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1825-1831
    • /
    • 2011
  • One of the major trends in traction power electronics is increasing the switching frequencies. The advances in the frequency elevation have made it possible to reduce the total size and weight of the passive components such as capacitors, inductors and transformers in the DC/DC converter and hence to increase the power density. The traction dynamic performance is also improved. This document describes several aspects relating to the design of resonant DC/DC converter operating at high frequency(10KHz) and the converter topologies and the control method of MAGLEV, which result in soft switching, are discussed.

  • PDF

전파형 ZVT-PWM DC-DC 컨버터 (Full Wave Mode ZVT-PWM DC-DC Converters)

  • 김태우;안희욱;김학성
    • 전력전자학회논문지
    • /
    • 제6권3호
    • /
    • pp.243-249
    • /
    • 2001
  • 본 논문에서는 전파형 ZVT-PWM 승압형 컨버터를 제안한다. 보조 스위치를 전파형 모드에서 동작을 시킴으로써, 기존의 컨버터에서 보조 스위치가 턴-오프 순간에 하드 스위칭(hard switching)을 하는 반면에 제안된 컨버터는 수동 및 능동 소자를 추가하지 않고 보조 스위치의 턴-오프 손실과 스위칭 잡음(noise)을 줄였고 그리고 고전력 밀도 시스템을 구현할 수 있다.

  • PDF