• Title/Summary/Keyword: Auxiliary Classifier

Search Result 16, Processing Time 0.018 seconds

Complementary Discriminant Analysis for Classification of Double Attributes

  • Hiraoka, Kazuyuki;Mishima, Taketoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.806-809
    • /
    • 2002
  • Real-world objects often have two or more significant attributes. For example, face images have attributes of persons, expressions, and so on. Even if we are interested in only one of those attributes, additional informations on auxiliary attributes can help recognition of the main one. In the present paper, the authors propose a method for pattern recognition with double attributes. A pair of classifiers are combined: each classifier makes a guess of its corresponding attribute, and it tells the guess to the other as a hint. Equilibrium point of this iteration can be calculated directly without iterative procedures.

  • PDF

Comparative Analysis of Diagnostic Prediction Algorithm Performance for Blood Cancer Factor Validation and Classification (혈액암 인자 유효성 검증과 분류를 위한 진단 예측 알고리즘 성능 비교 분석)

  • Jeong, Jae-Seung;Ju, Hyunsu;Cho, Chi-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Artificial intelligence application in digital health care has been increasing with its development of artificial intelligence. The convergence of the healthcare industry and information and communication technology makes the diagnosis of diseases more simple and comprehensible. From the perspective of medical services, its practice as an initial test and a reference indicator may become widely applicable. Therefore, analyzing the factors that are the basis for existing diagnosis protocols also helps suggest directions using artificial intelligence beyond previous regression and statistical analyses. This paper conducts essential diagnostic prediction learning based on the analysis of blood cancer factors reported previously. Blood cancer diagnosis predictions based on artificial intelligence contribute to successfully achieve more than 90% accuracy and validation of blood cancer factors as an alternative auxiliary approach.

TAP-GAN: Enhanced Trajectory Privacy Based on ACGAN with Attention Mechanism (TAP-GAN: 어텐션 메커니즘이 적용된 ACGAN 기반의 경로 프라이버시 강화)

  • Ji Hwan Shin;Ye Ji Song;Jin Hyun Ahn;Taewhi Lee;Dong-Hyuk Im
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.522-524
    • /
    • 2023
  • 위치 기반 서비스(LBS)의 확산으로 다양한 분야에서 활용할 수 있는 많은 양의 경로 데이터가 생성되고 있다. 하지만 공격자가 경로 데이터를 통해 잠재적으로 사용자의 개인정보를 유추할 수 있다는 문제점이 존재한다. 따라서 경로 데이터의 프라이버시를 보존하며 유용성을 유지할 수 있는 GAN(Generative Adversarial Network)을 사용한 많은 연구가 진행되고 있다. 그러나 GAN은 생성된 결과물을 제어하지 못한다는 한계점을 가지고 있다. 본 논문에서는 ACGAN(Auxiliary classifier GAN)을 통해 생성된 결과물을 제어함으로써 경로 데이터의 민감한 정점을 숨기고, Attention mechanism을 결합하여 높은 유용성과 익명성을 제공하는 합성 경로 생성 모델인 TAP-GAN(Trajectory attention and protection-GAN)을 제안한다. 또한 모델의 성능을 입증하기 위해 유용성 및 익명성 실험을 진행하고, 선행 연구 모델과의 비교를 통해 TAP-GAN이 경로 데이터의 유용성을 보장하면서 사용자의 프라이버시를 효과적으로 보호할 수 있음을 확인하였다.

Face Anti-Spoofing Based on Combination of Luminance and Chrominance with Convolutional Neural Networks (합성곱 신경망 기반 밝기-색상 정보를 이용한 얼굴 위변조 검출 방법)

  • Kim, Eunseok;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1113-1121
    • /
    • 2019
  • In this paper, we propose the face anti-spoofing method based on combination of luminance and chrominance with convolutional neural networks. The proposed method extracts luminance and chrominance features independently from live and fake faces by using stacked convolutional neural networks and auxiliary networks. Unlike previous methods, an attention module has been adopted to adaptively combine extracted features instead of simply concatenating them. In addition, we propose a new loss function, called the contrast loss, to learn the classifier more efficiently. Specifically, the contrast loss improves the discriminative power of the features by maximizing the distance of the inter-class features while minimizing that of the intra-class features. Experimental results demonstrate that our method achieves the significant improvement for face anti-spoofing compared to existing methods.

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.

Detection of Abnormal CAN Messages Using Periodicity and Time Series Analysis (CAN 메시지의 주기성과 시계열 분석을 활용한 비정상 탐지 방법)

  • Se-Rin Kim;Ji-Hyun Sung;Beom-Heon Youn;Harksu Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.395-403
    • /
    • 2024
  • Recently, with the advancement of technology, the automotive industry has seen an increase in network connectivity. CAN (Controller Area Network) bus technology enables fast and efficient data communication between various electronic devices and systems within a vehicle, providing a platform that integrates and manages a wide range of functions, from core systems to auxiliary features. However, this increased connectivity raises concerns about network security, as external attackers could potentially gain access to the automotive network, taking control of the vehicle or stealing personal information. This paper analyzed abnormal messages occurring in CAN and confirmed that message occurrence periodicity, frequency, and data changes are important factors in the detection of abnormal messages. Through DBC decoding, the specific meanings of CAN messages were interpreted. Based on this, a model for classifying abnormalities was proposed using the GRU model to analyze the periodicity and trend of message occurrences by measuring the difference (residual) between the predicted and actual messages occurring within a certain period as an abnormality metric. Additionally, for multi-class classification of attack techniques on abnormal messages, a Random Forest model was introduced as a multi-classifier using message occurrence frequency, periodicity, and residuals, achieving improved performance. This model achieved a high accuracy of over 99% in detecting abnormal messages and demonstrated superior performance compared to other existing models.