• Title/Summary/Keyword: Auxiliary Air

Search Result 175, Processing Time 0.03 seconds

Effects of the Design Parameters of Suspension Systems on the Bounce of Electric Trains (전동차 상하진동에 대한 현가장치 설계변수의 영향)

  • Park, Ki-Soo;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • A two degree-of-freedom model for the bogie and car body of an EMU(Electrical Multiple Unit) was implemented on the basis of the experimental data which was actually measured during the running test of an EMU. The air spring of the EMU was modeled using Nishimura's air spring model to accommodate viscoelastic characteristics. Numerical simulation for the variation of th e design parameters of the suspension system shows that reduction of the stiffness of the air spring by decreasing the internal pressure of the air tank or increasing the size of the auxiliary tank can reduce the bounce of the car body within the stability range of the suspension system.

A Suggestion of New Methodology on Thermoeconomics (열경제학에 대한 새로운 방법론 제안)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.315-320
    • /
    • 2009
  • Thermoeconomics or exergoeconomics can be classified into the three fields of cost estimating, cost optimization, and internal cost analysis. The objective of cost estimating is to estimate each unit cost of product and allocate each cost flow of product such as electricity or hot water. The objective of optimization is to minimize the input costs of capital and energy resource or maximize the output costs of products under the given constraints. The objective of internal cost analysis is to find out the cost formation process and calculate the amount of cost flow at each state, each component, and overall system. In this study, a new thermoeconomic methodology was proposed in the three fields. The proposed methodology is very simple and obvious. That is, the equation is only each one, and there are no auxiliary equations. Any energy including enthalpy and exergy can be applied and evaluated by this equation. As a new field, the cost allocation methodology on cool air or hot air produced from an air-condition system was proposed. Extending this concept, the proposed methodology can be applied to any complex system.

  • PDF

Assessment of Air Pollution and Estimation of Emission from Incheon International Airport by EDMS (EDMS를 이용한 인천국제공항의 대기오염 배출량 산정과 주변지역에 미치는 영향 평가)

  • Lee, Seong-Yong;Jang, Young-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.2
    • /
    • pp.67-77
    • /
    • 2002
  • Air traffic increased 12% annually in Korea since 1988 after the Olympics, this rate is two times than the rate of the world average. In order to accommodate fast growing aviation demand, Incheon International Airport is operated at Yongjong Island since March, 2001. The Incheon airport project will continue till 2020. After the final phase in 2020, Incheon International Airport will handle 100 million passengers, 530,000 flights and 7 million tons of cargo annually. In this study, air pollution from aircraft and other sources are calculated and assessed in Incheon International Airport area by EDMS(Emission and Dispersion Modeling System), which is a combined emission and dispersion model for airport. EDMS could also be considered power plant, incinerator and aircraft support equipment such as ground support equipment, aerospace ground equipment, auxiliary power units. And EDMS is recommended as preferred model for air quality assessment of the airport area by U.S. EP A. The result of this study shows that NOx emission from aircraft and support utility is estimated as 27,000 - 35,000 ton/yr and Namdong-Gu area in Incheon city is affected as 30-60 ppb by the NOx emission from these sources in 2020, the final phase of Incheon international airport construction.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation (주변 온도보상이 필요 없는 열선식 풍속 센서 시스템)

  • Sung, Junkyu;Lee, Keunwoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1188-1194
    • /
    • 2019
  • Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.

Study on Thermal Insulation Design and Heat Flow Analysis of Spacecraft Shipping Container (위성 운송용 컨테이너의 단열 설계와 열 유동 해석에 관한 연구)

  • Park, Sang-Rae;Lee, Choon-Woo;Kim, Jin-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In this paper, we propose a container wall and its boundary layer insulation design method that can maintain the temperature inside the spacecraft shipping container constantly under the condition that the heat or the external temperature changes severely to safely transport the satellite to the launch site. We will examine if the temperature inside the satellite shipping container is kept constant through the heat flow analysis and the satellite heat transfer analysis for the external environment of the satellite shipping container. Through the flow analysis inside the container, the flow distribution around the satellite in the container is analyzed, and the auxiliary fan, air conditioning system and special grill guide structure design for improving and optimizing heat flow performance are proposed.

Analysis of Multiple Factor of the Eddy Current Brake for Railway Application (철도차량용 와전류 브레이크의 다중 인자 분석)

  • Lee, Chang-Mu;Park, Hyun-Jun;Cho, Sooyoung;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1385-1390
    • /
    • 2015
  • This paper is analysis of multiple factor that should be considered in the design of an eddy current brake used as auxiliary brake system. The eddy current brake is a brake that generates a braking torque in a rotational direction opposite to the direction of the rotor by using a time-varying magnetic flux. The eddy current brake has the advantage of being able to take high current densities because this is used for a short period of time. Also, the eddy current brake is influenced by multiple factor such as number of slots, teeth width, coating thickness, air-gap length and so on. Therefore the eddy current brake was designed for use in railway application in consideration of the operation region and critical parameters.

Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor (단상유도전동기의 돌입전류저감을 위한 제어기 설계)

  • Park, Su-Kang;Baek, Hyung-Lae;Lee, Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.238-245
    • /
    • 2001
  • During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

1.2[kW] Glass HPF Boost Type Rectifier using ZC-ZVS Active Snubber (ZC-ZVS 엑티브 스너버를 이용한 1.2[kW]급 고역률 승압형 정류기)

  • Park, J.M.;Mun, S.P.;Kim, C.R.;Kim, Y.M.;Kwon, S.K.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1238-1240
    • /
    • 2003
  • A new soft switching technique that improves performance of the high power factor boost rectifier by reducing switching losses is introduced. The losses are reduced by air active snubber which consists of an inductor, a capacitor a rectifier, and an auxiliary switch. Since the boost switch turns off with zero current, this technique is well suited for implementations with insulated gate bipolar transistors. The reverse recovery related losses of the rectifier are also reduced by the snubber inductor which is connected in series with the boost switch and the boost rectifier. In addition, the auxiliary switch operates with zero voltage switching. A complete design procedure and extensive performance evaluation of the proposed active snubber using a 1.2[kW] high power factor boost rectifier operating from a 90 [$V_{rms}$] input are also presented.

  • PDF

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.