• Title/Summary/Keyword: Auxiliary Air

Search Result 176, Processing Time 0.031 seconds

A Study for Improving the Thermal Environment of Telecommunication Equipment Room -based on TDX-10, TDX-100, 5ESS-2000, PCM room- (통신장비실의 열환경 개선방안에 관한 연구 -TDX-10, TDX-100, 5ESS-2000, PCM실 중심으로-)

  • Cho, Chun-Sik;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.87-94
    • /
    • 2004
  • The purpose of this study is to improve thermal environment of telecommunication equipment rooms that hold TDX-10, TDX-100, 5ESS-2000, PCM of the latest telecommunication equipment. Analysis program is used the commercial CFD code, Star-CD and DOE-2.1E. The result has been compared by the energy consumption and the temperature contour at the 1 m height of room for each case. Different methods such as the relocation of the existing air-conditioner, the inflow of the ambient air into room, the installation of the forced fan and the cooling system equipment of the duct-connection type have been used to test for improvement of thermal environment. The analysis shows that most efficient method is the inflow of the ambient air into room but auxiliary equipment should be needed to prevent the local thermal spot.

Reengineering of Bus Engine Room Structure for Preventing Thermal Damages (열해현상 방지를 위한 버스 엔진룸 구조개선)

  • 맹주성;윤준용;손한규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-55
    • /
    • 2000
  • Four types of different flow inlet models were tested to improve the flow uniformity at the inlet of the radiator and to prevent thermal damages of auxiliary units from the hot air in the bus engine room. Measurements and numerical calculations were performed and their results were in a good agreement with each other. Simultaneously temperature measurements were carried out under the conditions of actual bus driving. As designing the new flow inlet at the partition board which seperates the engine space and radiator space, flow circulation can be achieved and fresh air comes into the engine room from the bottom. It was proved that new inlet makes the one air temperature cooling down in the engine room, the other uniformity improvement.

  • PDF

Numerical Analysis on Pressure Characteristics of the Pipe system of Train

  • Nam Seong-Won;Zhang Bo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.503-509
    • /
    • 2004
  • With modem computational fluid dynamics method (CFD), air-charging models of the air brake pipe system and auxiliary reservoir are built. Compared with one-dimension model, no empirical formula is introduced to solve branch pipe fields for two-dimension model. A modified operator-splitting method is presented to solve the coupled equations of pressure and velocity, and numerical simulation shows that it is very stable. Compare the numerical results with empirical data of heavy haul trains in home and abroad so as to prove the correctness of the theory and algorithm presented. This paper gives theoretic reference to the experiments of braking effects of heavy haul trains, and forms a basis for development of complete freight train air brake system simulation.

  • PDF

PRINCIPLES OF AN ACTIVE NOISE AND VIBRATION CONTROL SYSTEM CONSTRUCTION FOR SHIP

  • Maslov, Viatcheslav L.;Soloveitchik, Leonid I.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.860-863
    • /
    • 1994
  • Main sources of increased vibrations and air noise on ship are main and auxiliary engines and ship ducts. The various ways of transfer of vibration energy and air noise in passenger cabin of a vessel require, in general case, of various methods of attenuation. The transfer of vibration energy from engines through a support requires, alongside with shock-absorbers, availability active shock-absorbers. The transfer of vibration energy and hydrodynamic noise on ship ducts requires availability, alongside with flexible muffler, active mufflers. The availability of air noise from working equipment can require, along with absorbent covers, of space systems of active noise control. In the given article it is spoken about the unified approach to formation of the block-diagram of active noise and vibration control. The complex approach permits to receive additional efficiency in reduction of noise in passenger cabin of vessels.

  • PDF

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites (맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구)

  • Nguyen, Vanduc;Kim, Dooyoung;Hur, Wonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.38-58
    • /
    • 2018
  • The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

The effect of air and spray turbulence in a D.I. diesel engine on the flame progress (直接噴射式 디이젤機關의 燃燒室形狀과 火焰의 發達)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-52
    • /
    • 1987
  • For the favorable performance of a D.I. diesel engine, it is important to improve the mixture formation process and the ensuing early stage of combustion process. In the present paper, high speed photography was employed to investigate the effectiveness of a cavity digged in a piston crown for some more useful utilization of air. The cavity would function to improve mixing of fuel and air by the increase of turbulence of air and by the impingement of fuel spray on the cavity wall. The results obtained are summarized as follows: (1) From an aspect of thermal efficiency, it is effective to inject the spray tangentially to the cavity wall to enlarge the area of spray evaporation. (2) some deductions obtained from previous investigations using a hot air stream duct are supported by the present results. For example, it is effective for the quick development of flames throughout the combustion chamber to mix the evaporated fuel of main spray with the intermediates brought about by the early stage of combustion of the preceded auxiliary fuel spray.

A Study on the Noise Reduction of a Portable Fuel Cell System (휴대용 연료전지 시스템의 소음 저감에 대한 연구)

  • Jeon, In-Youl;Bae, Joon-Soo;Oh, Min-Jung;Choi, Sang-Hyeon;Lee, Choong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.858-861
    • /
    • 2006
  • In this paper, a study on the noise reduction in a mobile fuel cell system is presented. Among various fuel cell systems around 20W capacities designed for mobile electronic devices, the active direct methanol fuel cell (DMFC) systems have been recently developed. In such systems, the primary noise source is the air pump which provides sufficient air flow ($5{\sim}6$ liter/min) for electrochemical reaction with methanol fuel while the noise contributions from other auxiliary parts are relatively small. Especially, the discrete noise tones generated by the air pump are dominant and those frequency peaks related to the rotor harmonics are needed to be suppressed by a silencer. Therefore. the Herschel/Quinke (HQ) tubes, which use the out-of-phase cancellation of acoustic waves propagating through direct and indirect pathways, are applied to the inlet of the air pump. Performance of noise reduction with HQ silencer is analytically estimated by calculating the transmission. The length and number of thin HQ tubes are optimized to decrease the radiated noise. As a result, the sound pressure level could be successfully reduced by about 10 dB after applying three serially connected HQ tubes.

  • PDF

Experimental Study on the Auxiliary Device of Gas - Solid Cyclone (미세분진 제거를 위한 싸이클론 보조 장치 연구)

  • 조영민;이주열
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.423-424
    • /
    • 2000
  • 상대적으로 낮은 미세입자(주로 10$\mu$m이하) 제어효율은 기-고 싸이클론의 최대 약점으로 논의되어 왔다. 이전 연구에서 싸이클론의 유출가스에 포함되어 있는 미세분진 입자들을 2차적으로 분리하고 제거할 수 있는 Post Cyclone(PoC)이라는 장치를 개발하여 그 효용성을 입증하였고(Hoffmann,1996), Mita 등(Mita el. al., 1997)이 이론적 뒷받침을 위한 연구를 진행하여 이론적 모델을 제시하였다. 즉, PoC의 효율은 Reynolds 수와 Stokes 수의 함수로 표시될 수 있을 것으로 추정하였다. (중략)

  • PDF

Design of a Guide Vane for Improving Inside Flow Uniformity of Electrostatic Precipitator (전기집진기 내부의 유동 균일성 향상을 위한 가이드 배인의 최적설계)

  • Noh, Kyung-Wook;Bae, Seong-Jun;Park, Sookhee;Kang, Sunkyun;Lee, Jangmyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.523-528
    • /
    • 2013
  • In recent years, many efforts are increasingly being made to conserve the natural environment with enhanced emission standards and air quality standards. Also there are various methods necessary to be researched to minimize the emission of air pollutants. In particular, boilers of industrial facilities are major portions of the air pollution. The front duct which needs to be designed to reduce the gases to the electrostatic precipitator requires a bent tube, a reduction/extend tube and an auxiliary equipment, that is, a guide vane. This paper proposes an optimum design of the guide vane by a case study for electrostatic precipitator's flow uniformity. The operating conditions of this study are as follows: BMCR (Boiler Maximum Continuous Rate) and MGR (Maximum Guaranteed Rate) are 75%, 50%, and 30%; turbulent fluid dynamics model is based upon K-${\varepsilon}$ formulation. Presentation of the computed motion of particles is found to be quite useful to predict the precipitator performance by use CFD (Computational Fluid Dynamics).