• 제목/요약/키워드: Autotrophic single-stage nitrogen removal

검색결과 2건 처리시간 0.015초

2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션 (Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal)

  • 배효관
    • 한국물환경학회지
    • /
    • 제38권4호
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.