• 제목/요약/키워드: Autotrophic microorganism

검색결과 4건 처리시간 0.017초

미생물 성장 특성에 기초한 독립영양탈질의 화학양론식 연구 (A Study on the Reaction-Stoichiometry of Autotrophic Denitrification based on Growth Characteristic of Microorganism)

  • 이수원;김규동;최영균;김동한;정태학
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.121-127
    • /
    • 2004
  • It is necessary to supply external carbon source for enhancement of biological nitrogen removal from domestic wastewater with low influent C/N ratio. Sulfide was chosen as a cost effective electron donor and reaction stoichiometry for autotrophic denitrification was investigated by conducting bench-scale experiments in this study. Higher sulfur to nitrogen (S/N) ratio than the calculated value from theoretical reaction stoichiometry was required when the anoxic reactor was operated at open condition because dissolved oxygen introduced by surface aeration reacted with sulfide with ease. In addition, higher sulfate production and lower yield of microorganism could be observed under the same condition. It was possible to obtain reliable reaction stoichiometry for autotrophic denitrification by establishing pure anoxic condition. Linear relationship between bacterial growth and consumption of nitrate, sulfide, alkalinity, and sulfate production enabled to derive a relatively correct reaction stoichiometry for autotrophic denitrification when sulfide was used as an electron donor.

황입자를 이용한 독립영양탈질 미생물 군집분포 특성분석에 관한 연구 (A study on characteristics analysis of autotrophic denitrification microbial community using sulfur granule)

  • 윤수철;주재영;남덕현;박철휘
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.673-679
    • /
    • 2008
  • The representative microorganism of autotrophic denitrification using sulfur granule, oxidizes the reduction from S and performs denitrification by reducing $NO_3{^-}-N$ to $N_2$ gas. The sampling of autotrophic denitrification microorganisms has been performed from foreshore sludge, condensed sludge, and active sludge, but the analysis of autotrophic denitrification microbial community characteristics has been lacking. Based on the separation and identification of each sample using the PCR and DGGE methodologies, many types of sulfuric microorganisms and autotrophic denitrification microorganisms were found.

Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거 (Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR))

  • 신정훈;상병인;정윤철;정연규
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.

생물학적 영양염류 제거를 위한 돈사폐수의 반응 특성 (Reaction Characteristics of Piggery Wastewater for Biological Nutrient Removal)

  • 한동준;류재근;임연택;임재명
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.44-56
    • /
    • 1998
  • This study was performed to investigate the reaction characteristics of piggery wastewater for biological nutrient removal. The reaction characteristics were discussed the fraction of organics, the behavior of nitrogen, nitrification, denitrification, and the behavior of phosphorus. The fraction of readily biodegradable soluble COD was 11-12 percent. The ammonia nitrogen was removed via stripping, nitrification, autotrophic cell synthesis, and heterotrophic cell synthesis. The removal percents by each step were 12.1%, 68.9%, 15.0%, and 4.0%, respectively. Nitrification inhibition of piggery wastewater was found to occur at an influent volumetric loading rate over 0.2 NH$_{3}$-N kg/m$^{3}$/d. Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent. The phosphorus removed was released in the form of ortho-p in the aerobic fixed biofilm reactor, it was caused by autooxidation. The synthesis and release of phosphorus were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was 0.023mgP$_{syn}$/mgCOD$_{rem}$. The phosphorus contents of the microorganism were 4.3-6.0% on a dry weight basis.

  • PDF