• Title/Summary/Keyword: Autotrophic development

Search Result 14, Processing Time 0.025 seconds

An FCA-mediated epigenetic route towards thermal adaptation of autotrophic development in plants

  • Lee, Hyo-Jun;Ha, Jun-Ho;Park, Chung-Mo
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.343-344
    • /
    • 2017
  • Plants are able to recognize even small changes in surrounding temperatures to optimize their growth and development. At warm temperatures, plants exhibit diverse architectural adjustments, including hypocotyl and petiole elongation, leaf hyponasty, and reduced stomatal density. However, it was previously unknown how such warm temperatures affected the early stages of seedling development. In our recent study, we demonstrated that the RNA-binding protein, FCA, is critical for sustaining chlorophyll biosynthesis during early seedling development, which is a prerequisite for autotrophic transition at warm temperatures. FCA plays a dual role in this thermal response. It inhibits the rapid degradation of protochlorophyllide oxidoreductases (PORs) that mediate chlorophyll biosynthesis. In addition, it induces the expression of POR genes at the chromatin level, which contributes to maintaining functional enzyme levels. Our findings provide molecular basis for the thermal adaptation of chlorophyll biosynthesis during the early stages of seedling development in nature.

Effect of Light on Developmental Changes and Activities of Microbody in the Cotyledons of Radish Seedlings (발아중 빛에 의한 무 유식물의 자엽 Microbody의 활성 변화)

  • 박민철
    • Journal of Plant Biology
    • /
    • v.29 no.4
    • /
    • pp.243-254
    • /
    • 1986
  • The enzyme patterns and the food storage changes in radish (Raphanus sativus L. cv. Taewang) cotyledons during seedling development were studied. The radish seeds were germinated for 8 days at $25^{\circ}C$ under light (7, 000 lux) or dark condition. The lipid and protein contents per seed were 4.3 mg and 2.85 mg respectively. In 8-day-old light-grown seedling, the lipid and protein contents per cotyledon pair were 1.5 mg and 2.08 mg; in 8-day-old dark-grown seedling, they were 0.8 mg and 1.24 mg respectively. The heterotrophic phase of seedlings continued for 3 days after sowing and followed by autotrophic phase (3~6 day) and senescence phase (6~8 day). The food storage function decreased in response to time course. During heterotrophic phase, the activities of glyoxysomal enzymes (malate synthetase, isocitrate lyase, and catalase) were high at 2~3 day. Those patterns were somewhat more prominent in darkness. During the autotrophic phase, the activities of peroxysomal enzymes (glycolate oxidase and catalase) increased at 4~5 day.

  • PDF

Ecological Characteristics of the Epiphytes on Seagrass - I. Variations of the Epiphytic Community and Biomass Related to the Host Plant ($Zostera$ $marina$ (eelgrass) (해초에 부착하는 부착생물 군집의 생태학적 특성 - I. 잘피 ($Zostera$ $marina$ L.)의 성장에 따른 부착생물의 군집 변화)

  • Chung, Mi-Hee;Youn, Seok-Hyun
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.362-372
    • /
    • 2011
  • The relationships among total epiphytes, algal epiphytes and eelgrass ($Zostera$ $marina$ L.) were studied at eelgrass medows from July, 1998 to July, 1999 in Yulim-ri, Yeosu, Korea. Epiphytic diatoms on eelgrass leaves were observed from July to December 1998. From the results of this study, we inferred the following three (3) conclusions : 1) As eelgrass grew older, biomass of epiphytes increased, according to relationships between the leaf length and area of eelgrass and biomass (DW, AFDW and Chl. $a$) of epiphytes. 2) According to the ratio of dry weight, ash-free dry weight and Chlorophyll of epiphytes, the algae with calcareous or siliceous skeletons, such as coralline algae or diatoms, were dominated in the epitphytic algae community. 3) The autotrophic index (AI) calculated from AFDW and Chl. $a$ of epiphytes varied from 151 to 375. However, the period of autotrophic community was shorter than heterotrophic community and the value of AI was high. From these results, we inferred that heterotrophic community, including detritus or microorganisms were dominated in the most of research period.

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

Seasonal Variability of Picoplankton Around Ulneung Island (울릉도 주변 해역의 극미소플랑크톤 분포 특성)

  • Shim, Jeong-Min;Yun, Suk-Hyun;Hwang, Jae-Dong;Jin, Hyun-Gook;Lee, Yong-Hwa;Kim, Young-Suk;Yun, Sang-Chul
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1243-1253
    • /
    • 2008
  • The seasonal variations of picoplankton including Prochlorococcus, Synechococcus and Picoeukayotes around Ulneung Island were investigated by flow cytometry in spring, summer and autumn in 2006. All groups of picoplankton showed clear seasonal patterns in population abundance. Among the group, Synechococcus showed the most prominent seasonal variation during the study period. The maximal abundance of Synechococcus occurred in summer and the lowest in autumn. The seasonal distribution of Prochlorococcus displayed the reverse tendency with that of Synechococcus. The abundance of Prochlorococcus ranged from $2.9{\times}10^3$ cells/ml in summer to $311{\times}10^3$ cells/ml in autumn. However, the seasonal distribution of Picoeukaryotes was shown to be relatively constant, and the maximal abundance was $81.5{\times}10^3$ cells/ml in summer. The highest abundance of Picoeukaryotes occurred in summer and the lowest in autumn and the seasonal distribution in abundance of Picoeukaryotes showed a similar trend with that of Synechococcus. The estimated total carbon biomass of picoplankton were ranged from $74.7\;mg\;C/m^2$ to $1,055.9\;mg\;C/m^2$. The highest total carbon biomass occurred in summer, but lowest occurred in autumn. The pattern of the contribution of three picoplankton to total autotrophic picoplankton carbon is different. The contribution of Synechococcus to total autotrophic picoplankton carbon is increased to 75%, but the contribution of Prochlorococcus dropped to 12% in summer. The contribution of Picoeukaryotes is ranged from 24% in summer to 72.5% in spring.

Development of High-rate Nitrogen Removal Process Using Submerged MBR Packed with Granular Sulfur of Pilot Scale Plant (Pilot Scale Plant의 황 충진 MBR을 이용한 고효율의 질소제거 공법 개발)

  • Mun, Jin-Yeong;Hwang, Yong-U;Jo, Hyeon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, a process combined biofiltration with sulfur-utilizing autotrophic denitrification and membrane separation was proposed to examine the efficiency of nitrogen removal. As an experimental device, hollow-fiber module was installed in the center of reactor to generate the flux forward sulfur layer in the cylinder packed with granular sulfur. In addition, a simple module was installed in activated sludge aeration tank which inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. The experiment for developing new MBR process was carried out for three years totally. As the results of first two-year experiment, successful nitrogen removal performance was revealed with lab-scale test and pliot scale plant using artificial wastewater and actual plating wastewater. In this year, pilot scale test using actual domestic wastewater was performed to prove field applicability. As the results, high-rate nitrogen removal performance was confirmed with about 0.19 kg ${NO_3}^--N/m^3$ day of rate. Also significant fouling and pressure increase were not found during the experiment. And, the production ratio of sulfate and the consumption ratio of alkalinity showed a slightly higher value about 311 mg ${SO_4}^{2-}/L$ and 369 mg $CaCO_3$/L, respectively. In conclusion, the developed MBR process can be utilized as an alternative for retrofiting existing wastewater plants as well as new construction of advanced sewage wastewater treatment plants, with cost-effective merit.

Microzooplankton Assemblages: Their Distribution, Trophic Role and Relationship to the Environmental Variables

  • Park, Gyung-Soo;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.145-155
    • /
    • 1997
  • The distribution of microzooplankton and hydrographic variables were measured in the Virginia portion of Chesapeake Bay and its major rivers. Samples were collected at 14 locations at monthly interval from September 1993 through December 1995. Ciliates were numerically dominated (>90%) and copepod nauplii comprised highest proportion of the total microzooplankton biomass (>77%). Copepod nauplii and ciliates were the most abundant at oligohaline water and rotifers at freshwater. Total microzooplankton density and biomass were usually higher at oligohaline stations than fresh water and polyhaline stations. Despite high nutrient concentration and phytoplankton density at eutrophic water, micro- and mesozooplankton biomass were low. Mesozooplankton were relatively abundant at polyhaline stations. The comparison between annual mean biomass of ciliates (12.7 ${\mu$}gC/1) and that of autotrophic picoplankton (13.5 {$\mu$}gC/1) revealed that ciliates were a major consumer of picoplankton production. The secondary production by ciliates was 12.7 ${\mu}$gC/1/day, representing 5% of the annual mean primary production in Chesapeake Bay, Total microzooplankton comprised 84% of the total zooplankton carbon content, representing five times higher than mesozooplankton biomass.

  • PDF

Physiological studies on cell division by the technique of synchronous culture of chlorella (II) (클로렐라의 동조배양법에 의한 세포분열의 생리학적 연구 2)

  • 이영녹;심웅섭
    • Korean Journal of Microbiology
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 1969
  • The effect of glucose and 2-thiobarbituric acid on the biosynthesis of cell constituents such as protein, carbohydrate, DNA, RNA, phospholipid and PCA-soluble phosphate compounds in Chlorella duing the life cycle was measured, and the changes in the content of these main cellular components of the algal cell were analyzed in connection with the nuclear and cytoplasmic divison. In the normal autotrophic synchronous culture the contents of protein, RNA, and DNA in the cell showed a chracteristic changes according to the progress of cell development, increasing more or less throughout all the life cycle. The synthesis of protein is more prominent in the division period nad that of DNA is more active in the ripening period, while the synthesis of RNA is more rapid in the growing and ripening periods than other developmental stages. The period of division cycle was little affected by glucose in the medium, although the synchrony of the growth and cellular division was disturbed and the n value increased. The cotents of protein, carbohydrate, RNA nad DNA of the cell were increased by the glucose treatment throughout all the life cycle. On the other hand, both of cellular growth and division were retarded severely and the n value was decreased by the 2-thiobarbituric acid treatment throughout all the life cycle. On the other hand, both of cellular growth and division were retarded severely and the n value was decreased by the 2-thiobarbituric acid treatment. The synthesis of protein, carbohydrate, DNA, RNA and phospholipid of the cell was also retarded by 2-thiobarbituric acid. In the autotrophic, mixotrophic and 2-thiobarbituric acid-treated cultures, each having different mode cytoplasmic division, a common general schema occurring in the cell during the life cycle may be drawn as follows. The ratio of RNA to protein attains maximum value in the $L_1$-cell stage prior to the nuclear division and thereafter decreases during the periods of ripening and division. The ratio of PCA-soluble phosphate compounds to protein increased from the begining of the culture to $L_4$-cell stage successively and thereafter decreased gradually during the division period, while the ratio of protein to DNA kept almost constant up to the division period and thereafter increased during the division period. Therefore, it is presumed that the increase in the ratio of RNA to protein is to be an inducer of nuclear division and that the cytoplasmic division is induced by the increase in the ratio of protein to DNA.

  • PDF

A Prelimiary Study for Marine Ecosystem Health Assessment Using the Planktonic Organism in Jinhae Bay (진해만에서 부유생물을 이용한 해양생태계 건강성평가 예비조사)

  • Baek, Seung-Ho;Choi, Hyun-Woo;Kim, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.3
    • /
    • pp.125-132
    • /
    • 2010
  • In order to assess the effect of pollution on marine ecosystem, we examined the plankton health assessment at 16 stations during summer season in Jinhae Bay. The organic and inorganic pollutant sources (dissolved organic carbon; DOC, chemical oxygen demand; COD and Chlorophyll a; Chl.a), including planktonic orangism such as enterobacteria Escherichia coli, heterotrophic bacteria (HB), autotrophic nano-flagellates (ANF), heterotrophic nano flagellates (HNF), ciliate and harmful algal bloom species (HABs) were used to characterize marine ecosystem health assessment. Of these, we tentatively selected those items Chl.a, HABs, HB and E. coli for plankton health index (PHI). Also, the scoring criteria for each metric were based on a statistical analysis and then, the grades are rated on four levels. As a result, the ecological assessment of these data reveals that PHI in Jinhae Bay is rated as "Good or fair" for overall conditions. The present study suggests that the PHI might be considered as one of important management tool to assess marine ecosystem health of Jinhae Bay.

Biological Constraints in Algal Biotechnology

  • Torzillo, Giuseppe;Pushparaj, Benjamin;Masojidek, Jiri;Vonshak, Avigad
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.338-348
    • /
    • 2003
  • In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale re-quired for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.