The representative microorganism of autotrophic denitrification using sulfur granule, oxidizes the reduction from S and performs denitrification by reducing $NO_3{^-}-N$ to $N_2$ gas. The sampling of autotrophic denitrification microorganisms has been performed from foreshore sludge, condensed sludge, and active sludge, but the analysis of autotrophic denitrification microbial community characteristics has been lacking. Based on the separation and identification of each sample using the PCR and DGGE methodologies, many types of sulfuric microorganisms and autotrophic denitrification microorganisms were found.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.46-52
/
2007
As flue gas desulfurization (FGD) wastewater contains high concentrations of nitrate and is very low in organic carbon, the feasibility of nitrate removal by autotrophic denitrification using Thiobacillus denitrificans was studied. This autotrophic bacteria oxidizes elemental sulfur to sulfate while reducing nitrate to elemental nitrogen gas, thereby eliminating the need for addition of organic compounds such as methanol. Owing to the unusually high concentrations of dissolved salts $(Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+,\;B^+,\;SO_4^{2-},\;Cl^-,\;F^-,)$ in the FGD wastewater, extensive laboratory-scale and pilot-scale tests were carried out in sulfur-limestone reactors (1) to determine the effect of salinity on autotrophic denitrification, (2) to evaluate the use of limestone for pH control and as source of inorganic carbon for microbial growth, and, (3) to find the optimum environmental and operational conditions for autotrophic denitrification of FGD wastewater. The experimental results demonstrated that (1) autotrophic denitrification is not inhibited up to 1.8 mol total dissolved salt content; (2) inorganic carbon and inorganic phosphorus must be present in sufficiently high concentrations; (3) limestone can supply effective buffering capacity and inorganic carbon; (4) the high calcium concentration may interfere with pH control, phosphorus solubility and limestone dissolution, hence requiring pretreatment of the FGD wastewater; and, 5) under optimum conditions, complete autotrophic denitrification of FGD wastewater was obtained in a sulfur-limestone packed bed reactor with a sulfur:limestone volume ratio of 2:1 for volumetric loading rates up to 400g $NO_{3^-}N/m^3.d$. The interesting interactions between autotrophic denitrification, pH, alkalinity, and the unusually high calcium and boron content of the FGD wastewater are highlighted. The engineering significance of the results is discussed.
It is necessary to supply external carbon source for enhancement of biological nitrogen removal from domestic wastewater with low influent C/N ratio. Sulfide was chosen as a cost effective electron donor and reaction stoichiometry for autotrophic denitrification was investigated by conducting bench-scale experiments in this study. Higher sulfur to nitrogen (S/N) ratio than the calculated value from theoretical reaction stoichiometry was required when the anoxic reactor was operated at open condition because dissolved oxygen introduced by surface aeration reacted with sulfide with ease. In addition, higher sulfate production and lower yield of microorganism could be observed under the same condition. It was possible to obtain reliable reaction stoichiometry for autotrophic denitrification by establishing pure anoxic condition. Linear relationship between bacterial growth and consumption of nitrate, sulfide, alkalinity, and sulfate production enabled to derive a relatively correct reaction stoichiometry for autotrophic denitrification when sulfide was used as an electron donor.
Yoon, Su Chul;Joo, Jae-Young;Nam, Duck-Hyun;Park, Chul-Hwi
Journal of Korean Society of Water and Wastewater
/
v.22
no.2
/
pp.259-265
/
2008
Generally speaking, there are two widely used methods of Nitrogen removal from waste water: 1) nitrification using autotrophic microorganisms, and 2) denitrification using heterotrophic microorganisms. The C/N ratio is an important factor of the denitrification process. In this case, if methanol is added to increase the lacking organic matter, a high economic cost is incurred and methanol is left in the processed water. In an effort to fix these issues, autotrophic denitrification through the use of Hydrogen, Iron and Sulfur is being studied, and among those Sulfur is cheaper and carries out denitrification effectively, and therefore is being studied the most. In this study, after cultivating T. denitrificans, the presence of T. denitrificans was determined and the effectiveness of denitirification via T. denitrificans was studied. In order to find out about the inhibition of T. denitrificans from the loading of organic matter, this shows that the greater the loading of organic matter, the more the denitrification ability of T. denitrificans is hindered. In order to research the hindrance of T. denitrificans resulting from the loading of $NO_3{^-}-N$, these results show that concentrations less than 100mg/L per 100mL of gel volume do not hinder T. denitrificans. In order to research the optimization of denitrification resulting from T. denitrificans, three 500mL samples of Sulfur granules were prepared: 1) one with only T. denitrificans attached (Mode I), 2) one with both T. denitrificans and active sludge attached (Mode II), and 3) one with only active sludge attached (Mode III). The results showed that autotrophic denitrification using S from Mode I was the most active.
Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfur-denitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and $7.96mg^{1/2}/l^{1/2}{\cdot}h$ were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and $6.23mg^{1/2}/l^{1/2}{\cdot}h$ were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.
An autotrophic denitrification reactor (ADR-l) and a heterotrophic denitrification reactor (HDR-2) were operated to remove nitrate and nitrite in an anoxic environment in raw sewage. The $NO_3$-N removal rate of ADR-l was shown to range from 52.8% to 78.7%, which was higher than the $NO_3$-N removal rate of HDR-2. Specific denitrification rates (SDNR) of ADR-l and HDR-2 were 3.0 to 4.0 and 1.1 to $1.2\;mgNO_3$-N/gVSS/h, respectively. From results of restriction fragment length polymorphism (RFLP) of the 16S rRNA gene, Aquaspirillum metamorphum, Alcaligenes defragrans, and Azoarcus sp. were $\beta$-Proteobacteria that are affiliated with denitritying bacteria in the ADR-l. Specifically, Thiobacillus denitrificans was detected as an autotrophic denitrification bacteria. In HDR-2, the $\beta$-Proteobacteria such as Denitritying-Fe-oxidizing bacteria, Alcaligenes defragrans, Acidovorax sp., Azoarcus denitrificans, and Aquaspirillum metamorphum were the main bacteria related to denitrifying bacteria. The $\beta$-and $\alpha$-Proteobacteria were the important bacterial groups in ADR-l, whereas the $\beta$-Proteobacteria were the main bacterial group in HDR-2 based on results of fluorescent in situ hybridization (FISH). The number of Thiobacillus denitrificans increased in ADR-l during the operation period but not in HRD-2. Overall, the data presented here demonstrate that many heterotrophic denitritying bacteria coexisted with autotrophic denitrifying bacteria such as Thiobacillus denitrificans for nitrate removal in ADR-l. On the other hand, only heterotrophic denitritying bacteria were identified as dominant bacterial groups in HDR-2. Our research may provide a foundation for the complete nitrate removal in raw sewage of low-COD concentration under anoxic condition without any external organic carbon or the requirement of post-treatment.
Kim, Sung-Youn;Jang, Am;Kim, I-Tae;Kim, Kwang-Soo;Kim, In-S.
Environmental Engineering Research
/
v.10
no.6
/
pp.283-293
/
2005
Characteristics of sulfur-based autotrophic denitrification in a semi-continuous type reactor and the kinetic parameters were studied. Enriched autotrophic denitrifying culture was used for the reactor operation. Biomass growth on sulfur particles and in the liquid medium was monitored using the DAPI staining method. From the result of ion concentration changes and the biomass growth, maximum specific growth rate, ${\mu}_{max}$, and the half velocity constant, $K_M$, were estimated as $0.61\;d^{-1}$ and 3.66 mg/L, respectively. Growth yield coefficient, Y values for electron acceptor and donor were found as 0.49 gVSS/g N and 0.16 gVSS/g S. The biomass showed specific denitrification rate, ranging 0.86-1.13 gN/g VSS-d. A half-order equation was found to best simulate the denitrification process in the packed bed reactor operated in the semi-continuous mode.
Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4+-N/m3/d and 0.10-0.21 kg NO3--N/m3/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4+ or NO3- loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.
Journal of Korean Society of Environmental Engineers
/
v.22
no.11
/
pp.1995-2005
/
2000
The use of heterotrophic denitrification as an alternative method for supplying alkalinity during sulfur-utilizing autotrophic denitrification was evaluated by examining the effects of external carbon source (both type and concentration) and HRT on denitrification efficiency. Concentrations of $NO_3{^-}-N$ and $COD_{Cr}$ of nitrified landfill leachate used for experiment were 700-900mg/L and 900-2500mg/L. respectively, All experiment was conducted with sulfur packed bed reactors (SPBRs) which were operated at $35^{\circ}C$. The fraction of $NO_3{^-}-N$ removed by heterotrophic denitrification ($HDNR_{fraction}$) to balance the alkalinity consumption by autotrophic denitrification varied with the type of external carbon source. When methanol and sodium acetate was added at theoretical HDNRfraction value. 100% denitrification was achieved without alkalinity addition. However, glucose and molasses require $HDNR_{fraction}$ value greater than theoretical value for complete denitrification. The EBCT and volumetric loading rate at which 100% denitrification efficiency could be achieved were 6.76 h and $2.84kg-NO_3{^-}-N/m^3{\cdot}d$, respectively, based on the fact that 100% denitrification occurred within the bottom 11.5 cm layer of the SPBR. The maximum nitrogen removal rate occurred with 89% removal efficiency at loading rate of $5.05kg-NO_3{^-}-N/m^3{\cdot}d$. However, at short EBCT, clogging of SPBR was observed with excess growth of heterotrophic denitrifiers. This problem may be eliminated by back washing or by separating of heterotrophic denitrification from sulfur-utilizing denitrification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.